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Abstract 

Stair nesting is a type of nesting that leads to very light models. In  
this design, the number of treatments is the sum of the number of 
levels in each factor, instead of being the product of the number of 
levels in each factor as happens with the usual balanced nesting.         
In this work, we will present conditions that will allow us to        
obtain complete sufficient statistics and uniformly minimum variance 
unbiased estimators (UMVUEs) for the stair nested designs. 
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1. Introduction 

Cox and Solomon [1] introduced a new kind of nesting, the stair nesting. 
The algebraic structure of this new type of nesting was proposed and studied 
by Fernandes et al. [2] and initially they used the term step nested design 
instead of stair nested design. However, Fernandes et al. [3-5] did not  
present conditions to have uniformly minimum variance unbiased estimators 
(UMVUEs) for the variance component estimators. In this work, we will 
present conditions that will allow us to obtain complete sufficient statistics 
and UMVUE for the stair nested designs. 

If we have u factors, then we will have ∑ =
u
i ia1  combinations of levels 

for the stair nested designs in opposition to the usual balanced nested designs 

for which we have ∏ =
u
i ia1  combinations of levels. This is in fact a big 

advantage when comparing with balanced nesting because it will allow 
experiments that will become cheaper, due to the fewer number of 
observations involved, or with the same resources, we produce more 
experiments. In Section 2, we present the usual structure of a design with 
commutative orthogonal block structure (COBS). In Section 3, we integrate 
the stair nested designs into a class of models with COBS. In Section 4,       
we will present conditions that will allow us to obtain UMVUE for the stair 
nested designs. 

2. COBS 

Let ∑ == w
h hh0 βXy  be a mixed model with 0β  fixed and wββ ...,,1  

random and independent vectors, with null mean vectors and variance-
covariance matrices ,...,, 22

1 1 wcwc II σσ  where ,2
hσ  with ,...,,1 wh =  are the 

usual variance components and sI  is the identity matrix of order s. 

The observations vector y has mean vector 00βXμ =  and variance-

covariance matrix ∑ = σ= w
h hh1

2 ,MV  where ,hhh XXM ′=  with ,...,,1 wh =  

and W′  is the transpose matrix of W. 
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If the orthogonal projection matrix P on the space spanned by mean 
vector and the matrices wMM ...,,1  commute, then there will exist mutually 

orthogonal projection matrices (MOPMs) mQQ ...,,1  such that ∑ == z
j j1QP  

and ∑ == m
j jjhh b1 , ,QM  with ....,,1 wh =  We point out that ∑ = =m

j nj1 .IQ  

So we have 

∑ ∑ ∑
= = =

γ=σ=
w

h

m

j

m

j
jjjjhh b

1 1 1
,

2 ,QQV  

where mγγ ...,,1  are the canonical variance components and =γ j  

∑ = σw
h hjhb1

2
, ,  with ....,,1 mj =  So we say that this model will have COBS. 

Since P and V commute, the least square estimators (LSEs) of estimable 
vectors will be best linear unbiased estimators (BLUEs) (Zmyślony [7]). 

For ,...,,1 zi =  we have ( ) ( ),PQ RR j ⊆  with ( )WR  the range space 

of matrix W. So only mz γγ + ...,,1  are directly estimable. With 
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ΩΓΓ  

and matrix [ ]ijb=B  written as 

( ) ( )[ ],21 BBB =  

where ( )1B  has z columns, we have ( ) ( ) ,2ΩBΓ ll ′=  with .2,1=l  

If the row vectors of ( )2B  are linearly independent, then the column 

vectors of ( )2B′  are linearly independent, so we have ( )[ ] ( )222 ΓBΩ +′=  

and ( ) ( ) ( )[ ] ( )2211 ΓBBΓ +′′=  and all variance components are estimable, 

where +W  is the Moore-Penrose inverse of matrix W. Thus, ( )2Γ  and ,2Ω  
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the relevant parameters for the random effects part of the model, determine 
each other and that part segregates as a sub-model, so we say that there is 
segregation. 

3. Stair Nested Designs 

In a stair nested design, we have 1a  “active” levels for the first factor, 

combined with a single level of all other factors; then a new single level for 
the first factor, combined with 2a  new “active” levels of the second factor, 

combined with a single level of all other factors; and so on. So we will     

have ( ) ∑ =+−= h
k kh ahuc 1  level combinations for the h first factors, with 

....,,1 uh =  So, if we have uaa ...,,1  “active” levels for the u factors, then 

we have ∑ =
u
i ia1  combinations of levels. In Figure 1, we present a stair 

nested design with 3=u  factors, ,31 =a  ,22 =a  43 =a  “active” levels 

and ,51 =c  ,62 =c  93 =c  levels. So we have 9423 =++  combinations 
of levels. 

 
Figure 1. The stair nested design with three factors. 

Let us consider a random effects model ∑ == u
h hh0 ,βXy  where the 

model matrices are block-wise diagonal matrices given by 

( )

( )⎪⎩

⎪
⎨
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==
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+

+

,...,,1,...,,,...,,

,...,,,...,,
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uhh
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aaaa

11IIDX

1111DX
 

where s1  is a column vector with s components equal to 1. 
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We assume that 0β  is fixed and, for ,...,,1 uh =  hβ  are normal 

distributed and independent, with null mean vectors, ,hc0  and variance-

covariance matrices .2
hchIσ  

For the stair nested design presented in Figure 1, we have 

( )
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Assuming that the observations vector, y, is normal distributed with 

mean vector 00β= Xμ  and variance-covariance matrix ∑ = σ= u
h hh1

2 ,MV  

where ,hhh XXM ′=  with ,...,,1 uh =  we have 

( )
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where sJ  is the ss ×  matrix with all entries equal to 1. 

For the stair nested design presented in Figure 1, we have 
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For ,...,,1 uh =  we have the MOPMs 
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with ,2,,1,, jj aajhjh ×== 0QQ  jh ≠  and 
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where ss×0  is the ss ×  null matrix and .1
sss s JIK −−=  

For the stair nested design presented in Figure 1, we have 
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We put 

∑
=

⎟
⎠
⎞

⎜
⎝
⎛==

u

h
a

u
ah uaa

1 1

1....,,1
1 JJQP  

and we can rewrite the matrices hM  as 
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For the stair nested design presented in Figure 1, we have 

.4
1,2

1,3
1

423 ⎟
⎠
⎞⎜

⎝
⎛= JJJDP  
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So we can write 
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For the stair nested design presented in Figure 1, we have 
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Thus, uz =  and ( )2B  is a lower triangular matrix with elements     

equal to 1. This will be invertible so the models with stair nesting are COBSs 
since P and uMM ...,,1  belong to a quadratic subspace with principal basis 

{ }....,, 21 uQQ  Furthermore, these COBSs are segregated since matrix ( )2B  

is invertible. 

4. UMVUE 

In previous works, Fernandes et al. [3-5] were not able to show that           
the variance components estimators were UMVUEs. In this section, we will 
present conditions that will allow us to solve this problem. 

We can rewrite the variance-covariance matrix as 



C. Fernandes, P. Ramos and J. Mexia 172 

∑ ∑
= =

++γ+γ=
u
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u

h
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1 1
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where the canonical variance components are given by 
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So ∑ = γ= u
h hh
2

1 QV  and ∑ = σ=γ u
j jhjh b1

2
, ,  with .2...,,1 uh =  

Since ,hhh AAQ ′=  with ,2...,,1 uh =  and 
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we can rewrite the observations vector y as ( ) ( ) ( ) ( ),2211 yyy AA ′+′=  

where ( ) ( ) ,yy ll A=  with 2,1=l  and we can put, for ,...,,0 uh =  

( ) ( ) ,hh ll XAX =  with .2,1=l  

For ,...,,1 uh =  matrices hA  are given by 
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with ,2,,1,, jajhjh 0AA ′==  jh ≠  and 
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where s0  is a column vector with s components equal to 0, sT  are orthogonal 

matrices obtained through the recursive method known as Gram-Schmidt 
orthogonalization process and .sss KTT =′  
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For the stair nested design presented in Figure 1, we have 
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Thus, we will have the mean vectors 
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and the variance-covariance matrices ( ) ( )∑ = σ= u
h hh ll 1

2 ,MV  with ,2,1=l  
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for both parts of the model. For ,...,,1 uh =  we can write matrices ( ),lhM  

with ,2,1=l  as ( ) ( ) ( ).lll hh AMAM ′=  Thus, we can obtain the new 

MOPMs ( ),lhQ  with ,2,1=l  as 
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So we can rewrite the variance-covariance matrix ( )2V  as 
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with ∑ = σ=γ u
j jhjh b1

2
, ,  where hjb ,  with uj ...,,1=  and ,2...,,1 uh =  are 

the elements of matrix ( )2B  having uuuzu =−=− 22  columns. Since 

( )2B  is a lower triangular matrix with elements equal to 1, this matrix will 

be invertible and we can write ( ) ( )∑ == u
j jhjh d1 , ,22 MQ  with [ ]hjd ,  

( ).21−= B  

Since ( ),2hQ  with ,2...,,1 uuh +=  are MOPMs, we have 

( ) ( )∑
+=
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u

uh
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2

1
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thus the space spanned by the matrices ( ),2jM  with uj ...,,1=  is a 

quadratic subspace. For ,...,,1 uj =  we have [ ( ) ( )] ( )[ ].222 00 XXM RR j ⊆  
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Then the vector statistic ( ) ( ) ( ) ( ) ( ) ...,,222,22 10 yyy MX ′′  ( ) ( ) ( )222 yy uM′  

is a complete sufficient statistic (Rao and Rao [6]). 

Since COBSs with matrix ( )2B  invertible are segregated and ( )2y  are 

normal distributed, the variance-covariance estimators obtained from ( )2y  

will be UMVUE for the usual and canonical variance components in the 
family of estimators obtained from ( ).2y  
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