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Abstract

Stair nesting is a type of nesting that leads to very light models. In
this design, the number of treatments is the sum of the number of
levels in each factor, instead of being the product of the number of
levels in each factor as happens with the usual balanced nesting.
In this work, we will present conditions that will allow us to
obtain complete sufficient statistics and uniformly minimum variance
unbiased estimators (UMVUESs) for the stair nested designs.
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1. Introduction

Cox and Solomon [1] introduced a new kind of nesting, the stair nesting.
The algebraic structure of this new type of nesting was proposed and studied
by Fernandes et al. [2] and initially they used the term step nested design
instead of stair nested design. However, Fernandes et al. [3-5] did not
present conditions to have uniformly minimum variance unbiased estimators
(UMVUEs) for the variance component estimators. In this work, we will
present conditions that will allow us to obtain complete sufficient statistics
and UMVUE for the stair nested designs.

If we have u factors, then we will have Zrzl a; combinations of levels
for the stair nested designs in opposition to the usual balanced nested designs

for which we have HL 8 combinations of levels. This is in fact a big

advantage when comparing with balanced nesting because it will allow
experiments that will become cheaper, due to the fewer number of
observations involved, or with the same resources, we produce more
experiments. In Section 2, we present the usual structure of a design with
commutative orthogonal block structure (COBS). In Section 3, we integrate
the stair nested designs into a class of models with COBS. In Section 4,
we will present conditions that will allow us to obtain UMVUE for the stair
nested designs.

2. COBS

w . :
Let yzzhzoxhﬂh be a mixed model with By fixed and By, ..., By
random and independent vectors, with null mean vectors and variance-
covariance matrices cslzlC - valc , where G%, with h =1, ..., w, are the
1 W
usual variance components and I is the identity matrix of order s.
The observations vector y has mean vector p = XoB, and variance-
covariance matrix V =Z¥210%Mh, where My, =X X}, with h =1, ..., w,

and W' is the transpose matrix of W.
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If the orthogonal projection matrix P on the space spanned by mean

vector and the matrices My, ..., M, commute, then there will exist mutually

orthogonal projection matrices (MOPMs) Qy, ..., Qp, such that P = ZLIQ j

m . . m
and My, ZZj:1bh,ij= with h=1,...,w. We point out that ijle =I,.

So we have
W m m
_ 2 ,
V=2 0h 2 b Q) = 2 7iQ;,
h=1  j=I j=1
where vy, .., ym are the canonical variance components and yj =

Z\r/,vzl b, jcﬁ, with j =1, ..., m. So we say that this model will have COBS.

Since P and V commute, the least square estimators (LSEs) of estimable

vectors will be best linear unbiased estimators (BLUESs) (Zmyslony [7]).
For i =1, .., z, we have R(Qj) c R(P), with R(W) the range space
of matrix W. So only y,.1, ..., Y are directly estimable. With
2
11 Yz+1 o1
r=|:( re=| : [ @*=|:

Yz Tm 63\,
and matrix B = [bj;] written as
B =[B(1) B(2)],
where B(1) has z columns, we have T'(1) = B'(1)Q2, with | =1, 2.

If the row vectors of B(2) are linearly independent, then the column
vectors of B'(2) are linearly independent, so we have Q° = [B'(2)]'T(2)
and T'(1) = B'(1)[B'(2)]'T(2) and all variance components are estimable,

where W™ is the Moore-Penrose inverse of matrix W. Thus, T'(2) and Q2
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the relevant parameters for the random effects part of the model, determine
each other and that part segregates as a sub-model, so we say that there is
segregation.

3. Stair Nested Designs

In a stair nested design, we have a; “active” levels for the first factor,

combined with a single level of all other factors; then a new single level for

the first factor, combined with a, new “active” levels of the second factor,

combined with a single level of all other factors; and so on. So we will
have ¢, = (u-h)+ Z: _, 3 level combinations for the h first factors, with
h =1, .., u. So, if we have a, ..., @, “active” levels for the u factors, then
we have Z:le a; combinations of levels. In Figure 1, we present a stair
nested design with U =3 factors, 8 =3, a, =2, a3 =4 “active” levels

and ¢; =5, ¢y =6, C3 =9 levels. So we have 3+ 2 +4 = 9 combinations

of levels.
;=5
Co — 6
Cyq = 9

a, =3 ag =2 ag =4
Figure 1. The stair nested design with three factors.

Let us consider a random effects model Yy :zlﬁzoxhﬁh’ where the

model matrices are block-wise diagonal matrices given by

{XO =D(lg. . 1g . Tg s o 1)

Xp =D(Iy, ... I . 1

) P h=1,..u,

s 1a,)

where 15 is a column vector with S components equal to 1.
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We assume that P, is fixed and, for h=1,..,u, B, are normal

distributed and independent, with null mean vectors, Och, and variance-

covariance matrices G%Ich .

For the stair nested design presented in Figure 1, we have
Xy = D(15, 15, 14),
X =D(I3, 1, 1),

X, = D(I3, I, 1),

X5 = D(I3, I, I).
Assuming that the observations vector, Yy, is normal distributed with
. . . u 2
mean vector p = Xy and variance-covariance matrix V = thlcth,
where M}, = XX}, with h =1, ..., u, we have

My =Dy, ... da . da s Ja,);
Mp, =D(lg. . Ig . Ja e Ja,). h =10,

where Jg is the s x S matrix with all entries equal to 1.

For the stair nested design presented in Figure 1, we have
My = D(J3, I3, Jy),
M; = D(I3, 35, Jy),

M, = D(I3, I, Jy4),

M; = D(I3, I, 1).
For h =1, ..., u, we have the MOPMs

{Qh = D(Qh,l,lﬂ e Qh,u,l)’
Qhiu = D(Qp 1,25 - Qpu,2)

with Qh, i1= Qh,j,Z = Oajxaj’ h # J and
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1
Qh,h,l = a"]aha

Qhh,2 = Ky,

where 0g,¢ is the S x s null matrix and K¢ = I — S_IJS.

For the stair nested design presented in Figure 1, we have

1
Q =D(Qy1,1,Q1,21,Q131) = D(§J3, 05,2, 04><4),
1
Q2 =D(Q3,1,1,Q2,2.1-Q2.31) = D(03><3a EJza 04><4j5

1
Q3 =D(Q3,1,1,Q3,21,Q331) = D(03><3’ 05,0, ZJ“)’

Q4 =D(Qy,1,2, Q1.2,2, Q1,3,2) = D(K3, 09y, 0454),
Qs =D(Q2,1,2, Q2,2,2, Q2,3,2) = D(03,3, K3, 04,4),

Qs =D(Q3.1,2, Q3.2,2, Q3.32) = D(03,3, 0252, Ky).

We put

u
1 1
P=> Q= (a—lJal, EJaUJ
h=1

and we can rewrite the matrices My, as

u
M, = Zh:1 anQn,
Rl u . B
MJ = thl(Qh + Qh+u) + Zh:j+l ath, j=1.,u-1,
u
M, = Zh:l (Qn + Qnyy) =In.

For the stair nested design presented in Figure 1, we have

1 1 1
P = D(§J3, §J2, ZJ4)
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So we can write
2u .
MJ = hzlbj’th, j=1.,u-1,
M 2u Q
u= h= <N

with

bjh=1L Jj=L.,u h=1.,]j

b],h:ahi J:l,,u_l, h:J+l,,u,
bjn=1 j=L.,u h=u+l.,u+]j,
bj,hzo’ jzlz-":u_l; h=U+j+1,...,2u.

For the stair nested design presented in Figure 1, we have

by bo b3 |bg bs b
B=[B(l) B(Q2)=|by; byy bys|bps bys bys
by; b3p b33 b3y bys bsg

1 dy a3 1 0 O
(1 1 a1 1 0]
1 1 1 |1 1 1

Thus, z=u and B(2) is a lower triangular matrix with elements

equal to 1. This will be invertible so the models with stair nesting are COBSs

since P and My, ..., M, belong to a quadratic subspace with principal basis
{Qq, ..., Qp}. Furthermore, these COBSs are segregated since matrix B(2)

is invertible.
4, UMVUE

In previous works, Fernandes et al. [3-5] were not able to show that
the variance components estimators were UMVUEs. In this section, we will

present conditions that will allow us to solve this problem.

We can rewrite the variance-covariance matrix as
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u u
V= hZ:Yth + hZYu+hQu+ha
-1 -1

where the canonical variance components are given by

h-1 ) u 2
Yh = ijlajaj + Zj:hcj’
u 2
Yu+h = Zj:hcj'
S R A o 2 .
0 V—thlthh and vy, —ijlbj,hcj, with h =1, ..., 2u.

Since Qy, = ALAy, with h =1, ..., 2u, and

Ay Ayl
Al)=] : and A(2)=| : |,
Au A2u

we can rewrite the observations vector y as y = A'(1)y(1) + A'(2) y(2),
where y(lI)= A(l)y, with | =1,2 and we can put, for h=0, .., u,
Xh(l) = A(l)Xh, with | =1, 2.

For h =1, ..., u, matrices Ay, are given by

{Ah =D(Ap 1,15 - An,u1)>
Apyy = D(Ah,1,2= ) Ah,u,z)

with Ah,j,l = Ah,j,2 = O'aj, h= jand

1
Anh1 = =14
s 1y h’
Van
Apho = Ty,

where 0y is a column vector with S components equal to 0, Ty are orthogonal
matrices obtained through the recursive method known as Gram-Schmidt

orthogonalization process and TgTg = K.
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For the stair nested design presented in Figure 1, we have

1
A = DA , A , A =D(—1',0',0'),
1 (A 11> AL21 ALs) 503 02: 04
1

A, =D(A , A , A =D(0’,—1',0’),

2 =D(Ay 11, A2 1, A3 1) 35 120
1

Ay =D(Ay 1. Ay, 1, A =D@gw,—r}

3 =D(A311, A3 21, A331) 3 02, =1y

Ay =D(Ay 12, A 22, Ay32) = D(T3, 04, 04),

As =D(Ay 12, Az 2.2, Ay 32) = D(03, Ty, 04),

Ag =D(A31 2, A3 2.2, A3 32) =D(03, 05, Ty),

where
V2 2
L=17 7}
246 o e
| 0 6 6
o Y2 2
L 2 2
and
V3 3 3 V3]
2 6 6 6
NG
L=10 =5 5 %
NN}
R

Thus, we will have the mean vectors

{u(l) = A(Dn,
n2)=A2)p=0

and the variance-covariance matrices V(I) = Zﬂzl oiMy (1), with | =1, 2,
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for both parts of the model. For h =1, ..., u, we can write matrices M(l),
with | =1,2, as Mp(l) = A(I)MpA'(l). Thus, we can obtain the new
MOPMs Q(1), with | =1, 2, as

{Qh(l) = A(DQpA'(1), h=1, .. u,
Qh(2) = A(2)QrA'(2), h=u+1,..,2u.

Since M = Zﬁilbj,th’ we have, for j =1, ..., U,

M;(1) = Z:zlbj,th(l),
M@= b hQy(2).

So we can rewrite the variance-covariance matrix V(2) as

u 2u
V(2)= > eiMj(2)= D 1nQn(2)
j=l1 h=u+1

with vy, =Zl;:1bj,h0%, where bj,h with j=1,...,u and h =1, .., 2u, are
the elements of matrix B(2) having 2u—z = 2u —u = U columns. Since
B(2) is a lower triangular matrix with elements equal to 1, this matrix will
be invertible and we can write Q(2) = ijldj,hMj(z)a with [dj p]
=B7(2).

Since Qp(2), with h =u +1, ..., 2u, are MOPMs, we have

2u
V(2)= > 7iQn(2),

h=u+1
thus the space spanned by the matrices M(2), with j=1,..,u is a

quadratic subspace. For j =1, ..., u, we have R[M(2)X,(2)]  R[X((2)]
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Then the vector statistic Xg(2) y(2), y'(2)M;(2) y(2), ..., Y'(2)My(2)y(2)

is a complete sufficient statistic (Rao and Rao [6]).

Since COBSs with matrix B(2) invertible are segregated and y(2) are

normal distributed, the variance-covariance estimators obtained from y(2)

will be UMVUE for the usual and canonical variance components in the

family of estimators obtained from y(2).
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