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defined by directed weighted cycles (especially by directed weighted
circuits) in random ergodic environments.

1. Introduction

It is known that the classical birth-death chain is a special case of
homogeneous, aperiodic, irreducible Markov chain (discrete-time or
continuous-time) on the set of non-negative integers, where state changes can
only happen between neighboring states. This means that the state transitions
are of only two types: “births” which increase the state variable by one and
“deaths” which decrease the state variable by one, that is, if the current
state at time instant n (discrete-time) is X, =1, then the state at the next

time instant (n +1) can only be X, ;1 =i+1 or (i—1) (Nowak [10] and
Wilkinson [12]).

The model’s name comes from a common application, the use of such
models to represent the current size of a population where the transitions are
literal births and deaths. In general, the birth-death processes have many
applications in demography, epidemiology or in biology since they may be
used to study the evolution of bacteria of the number of people with a disease
within a population.

By using the cycle-circuit representation theory of Markov processes, the
present work arises as an attempt to investigate suitable criteria regarding
positive/null recurrence and transience for the corresponding “adjoint”
Markov chains describing uniquely the discrete-time birth-death chains by
directed circuits and weights in random ergodic environments. (Kalpazidou
[7] and Derriennic [1]). This will give us the possibility to study specific
problems associated with birth-death chains in another way through cycle-
circuit representations. (For the study of cycle-circuit representation of
discrete-time birth-death chains in fixed ergodic environments as special
cases of random walks we refer the reader to Ganatsiou [2-5]).

The paper is organized as follows: In Section 2, we give a brief account
of certain concepts of cycle-circuit representation theory of Markov
processes that we shall need throughout the paper. In Section 3, we present
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some auxiliary results regarding the study of cycle-circuit and weight
representations of discrete-time birth-death chains in fixed and random
ergodic environments in order to make the presentation of the paper more
comprehensible. These results will give us the motivation to study the
equivalent proper criteria regarding transience and recurrence of the
corresponding Markov chains, describing uniquely the classical discrete-
time birth-death chains in random ergodic environments, as it is given in
Section 4.

In the next we need the following notation:

N=1{01 2, ..}, N* = {1, 23 ..}
2. Preliminaries

Let S be a denumerable set. The directed sequence ¢ = (i, iy, ..., iy, i)
modulo the cyclic permutations, where iy, iy, ..., iy € S, v >1, completely
defines a directed circuit in S. The ordered sequence € = (i, iy, ..., iy)
associated with the given directed circuit c is called a directed cycle in S. A
directed circuit may be considered as

¢ =(c(m), c(m+1), .., c(m+v-1), c(m+V)),
if there exists an m € Z, such that
i =c(m+0),ip, =c(m+1), .., i, =c(m+v-1),i =c(m+V),
that is a periodic function from Z (the set of integers) to S.

The smallest integer p = p(c) > 1 satisfying the equation c(m + p) =
c(m), for all me Z, is the period of c. A directed circuit ¢ such that
p(c) =1 is called a loop. (In the present work, we shall use directed circuits

with distinct point elements).

Let a directed circuit ¢ (or a directed cycle ¢) with period p(c) > 1.

Then we may define by
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1, if there exists an m e Z, such that i = c(m), j =c(m+n),
3G, )=

0, otherwise,
the n-step passage function associated with the directed circuit ¢, for any
i, j €S, n>1. We may also define by

3(i) = 1, if there exists an m e Z such that i = c(m),
€77 10, otherwise,

the passage function associated with the directed circuit c, forany i € S. The
above definitions are due to MacQueen [9] and Kalpazidou [7].

Given a denumerable set S and an infinite denumerable class C of
overlapping directed circuits (or directed cycles) with distinct points (except
for the terminals) in S such that all the points of S can be reached from one
another following paths of circuit-edges, that is, for each two distinct points i
and j of S there exists a sequence ¢, Cy, ..., Ck, k =1, of circuits (or cycles)
of C such that i lies on ¢; and j lies on ¢, and any pair of consecutive
circuits (cp, ¢,41) have at least one point in common. We may also assume
that the chain C contains, among its elements, circuits (or cycles) with period
greater or equal to 2.

With each directed circuit (or directed cycle) ¢ € C let us associate a
strictly positive weight w, which must be independent of the choice of

the representative of ¢, that is, it must satisfy the consistency condition
Weot, = We, k € Z, where ty is the translation of length k.

For a given class C of overlapping directed circuits (or cycles) and for a
given sequence (W), . Of weights we may define by

ZWC : J((:l)(in )]
.. — ceC
Pij ZW(: -3.(0) (2.1)

ceC

the elements of a Markov transition matrix on S, if and only if
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D> W - Jc(i) < oo, forany i e S. This means that a given Markov transition
ceC

matrix P = (pij), i, j €S, can be represented by directed circuits (or

cycles) and weights if and only if there exists a class of overlapping directed
circuits (or cycles) C and a sequence of positive weights (W ). such that

the abovementioned formula (2.1) holds. In this case, the representations of
the distributions of Markov processes (with discrete or continuous parameter)
having an invariant measure as decompositions in terms of the cycle (or
circuit) passage functions are called cycle (or circuit) representations while
the corresponding discrete parameter Markov chains generated by directed
cycles (or circuits) are called cycle (or circuit) chains with Markov transition
matrix given by (2.1). Furthermore, the Markov transition matrix P has a
unique stationary distribution p which is a solution of p. P = p defined by

p(i) = > we - J(i), ies.

ceC

It is known that the following classes of Markov chains may be represented
uniquely by circuits (or cycles) and weights:

(i) The recurrent Markov chains (Minping and Min [11]).
(ii) The reversible Markov chains.

3. Circuit and Weight Representations of
Discrete-time Birth-death Chains

3.1. Fixed ergodic environments

Let us consider the Markov chain (X,),s, on N, which describes a

discrete-time birth-death chain. Since the state transitions are of only two
types, that is, k - (k+1) and k — (k—1), the elements of the

corresponding Markov transition matrix are defined by
P(Xnsg =k +1/Xy =k) = p,
P(Xpe1 =k =1/Xp = k) = g,
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such that py +gx =1, 0< px <1, for every k >1, with pg =1, asitis
shown in the following diagram:

/___p_ﬂ_\‘* ] [az) /JE\‘
@, T, . 0 .. @O C0o.
q qz qs 9y
Figure 1

A. Description of the representation of the discrete-time birth-death
chain by directed circuits and weights

Let us assume that (py),-, is an arbitrary fixed sequence with
0 < pg <1, forevery k >1, with py =1. Then if we consider the directed
circuits ¢ = (k, k +1, k), k > 0, and the collection of weights (W, )y>q
we may obtain that

ch

Pk =———, Pp =1
ch—1+WCk
W,
Ok =1- Pk =¢, k >1.
WCk—1+WCk

Here the class C(k) contains the directed circuits ¢, = (k, k +1, k), ¢x_q =
(k =1, k, k —1). Hence, the transition matrix P = (pj;) with

wg, 3G, 1)
k=0

Pij = , fori= |, (3.1)

0

Z We, - Iy (i)
k=0
pii =0,
where Jét)(i, j) =1, if i, j are consecutive points of the circuit ¢,

Jck (i) =1, ifiisa point of the circuit ¢,
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expresses the representation of the Markov chains (Xn)nZO by cycles
(especially by directed circuits) and weights.

Furthermore, let us consider the “adjoint” Markov chains (Xp),sq (of

the abovementioned Markov chain (X, )..q) on N whose the elements of

n>0
the corresponding Markov transition matrix are defined by

P(Xps1 =k +1/Xp = k) = af,

P(Xp.1 =k —1/Xp = K) = pf,
such that pp +Qqx =1, 0<qg <1, for every k >1 with gy =1, as it is

shown in the following diagram representing the “adjoint” Markov chain of a
discrete-time birth-death chain:

90 q

! q, Qi
—-""‘—_'_"-“\.‘ ’—"‘-"_"‘““
0. 0. 0 . @0
P ph p: P!

Figure 2

B. Description of the representation of the “adjoint™ discrete-time birth-
death chain by directed circuits and weights

If we assume that (qj ), - is an arbitrary fixed sequence with 0 < g <1,

for every k >1, with gqg =1 and if we consider the directed circuits

ck = (k+1 k, k+1), k>0 and the collections of weights (W, ),>q, then

we may have that

pk=1-¢g =— L  k>1 (3.2)

Here the class C'(k) contains the directed circuits cj = (k +1, k, k +1),

Ck—1 = (k, k =1, k). Hence, the transition matrix P’ = (pfj) with elements
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equivalent to that given by the abovementioned formulas (3.2), expresses

also the representation of the “adjoint” Markov chain (Xp),.o by directed

cycles (especially by directed circuits) and weights.
So we have the following:

Proposition 1. The Markov chain (X,) describes the discrete-time

n>0
birth-death chain as above has a unique representation by directed cycles
(especially by directed circuits) and weights.

Proposition 2. The “adjoint” Markov chain (X,)., defined as above

n>0
has a unique representation by directed cycles (especially by directed
circuits) and weights.

For the proofs of the above propositions, see Ganatsiou [4, 5].
3.2. Random ergodic environments

Let us now consider a discrete-time birth-death chain on N with
transitions k — (k —1) and k — (k +1), whose transition probabilities

(Pk )ycn CONstitute a stationary and ergodic sequence. A realization of this

sequence is called a random environment for this chain. Regarding the study
of the unique cycle and weight representation of this chain in random
environments for almost every environment, let us consider a probability
space (Q, F, u), a measure preserving, ergodic automorphism of this

space 6 :Q — Q and the measurable function p : Q — (0, 1) such that for

every o € Q, which generates the random environment p, = p(0°w), the

sequence (py ), . IS @ stationary and ergodic sequence of random variables.

Assume that S = (N)N is an infinite product space with coordinates
(Xn)pso- Then we may define a family (P“) _, of probability measures
on S such that for every o € Q, the sequence (Xn)nZO is a Markov chain on

N whose the elements of the corresponding Markov transition matrix are
defined by
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P°(Xg = 0) =1, P°(Xpyq =k +1/X, = k) = p(6kw),
P®(Xpay = k =1/ X =k) =1- p(6“0) = q(0¥0), x e N,

as it is showed in the following diagram:

pi8°w) pl 8'w) pujela)] Pl 8""w)
L0 e 0 - @0
q(6'm) glw"m] c[(n‘m_l (]I'_ﬂ‘.('ﬂ
Figure 3

Let us now introduce the “adjoint” discrete-time birth-death chain in
random ergodic environments denoted by (Xy),,so- For every environment

oeQ let (P®) be the family of probability measures on S. Then the

e

sequence (Xp),so is @ Markov chain on N whose the elements of the
corresponding Markov transition matrix are defined by

P(Xy =0)=1,

PO(Xho = k=1/Xp = k) = p(6*),

PO(Xhy =k +1/X}) = k) =1- p(6¥0) = q(6%w), k e N*,
as it is showed in the following diagram:

q(8°0) q(0'm) (o) qi0""m)

G000 .- @__0-

p('m) p(0e) pOe) p(0'e)
Figure 4
Hence, we have the following:
Proposition 3. For p almost every environment o € Q, the chain

(Xn)ys0 has a unique circuit and weight representation.

Proposition 4. For p almost every environment o € Q, the chain
(X1)=0 Nas a unique circuit and weight representation.
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For the proofs of the above propositions see Ganatsiou et al. [6].

4. Criteria of Recurrence and Transience for the Markov Chains
(Xn)nzo'(xﬁ)nzo

4.1. Fixed ergodic environments

We consider that for the Markov chain (X)) there is a unique

n>0"’

invariant measure up to a multiplicative constant factor py, = wy_3 + W,

k>1 pg =wp, while for the Markov chain (Xp),50, Mk = Wk_1 + W,

k >1 with pg = wp. In the case that an irreducible chain is recurrent, there

is only and only one invariant measure (finite or not), so we may obtain the
following:

Proposition 5. (i) The Markov chain (X,) defined as above is

n=0

positive recurrent if and only if

Z(bl bzbk)/pk < +OO£OI' Wio ZWk/pk < +OOJ.
k=1

k=1

(ii) The Markov chain (Xp,).. defined as above is positive recurrent if

n>0

and only if

and

N , , 1

o0
k=1 k=1

In order to study the properties of recurrence and transience for the

Markov chains (X)) (Xh)pso We shall use the following proposition

n>0’

(Karlin and Taylor [8]).
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Proposition 6. Let us consider a Markov chain on N which is
irreducible. Then if there exists a strictly increasing function that is
harmonic on the complement of a finite interval and that is bounded, then the
chain is transient. In the case that there exists such a function which is
unbounded the chain is recurrent.

Therefore, we get (see Ganatsiou et al. [5]):

Proposition 7. The Markov chain (X,,).., defined as above is transient

n>0
if and only if the adjoint Markov chain (Xp),s, is positive recurrent and
reciprocally. Moreover, the adjoint Markov chains (X)sq: (Xp),so are

null recurrent simultaneously. In particular,

(i) The Markov chain (X,),.. defined as above is transient if and only

n>0
if
1 <, v 1
W—b-kzz‘iwk < +oo and wy -émz—koo.
(ii) The Markov chain (Xp),so defined as above is transient if and only
if

1 o0
— ) W /pg < +w.
s kz_; k/ Pk

(iii) The adjoint Markov chains (X,) (X1)=0 are null recurrent in

n>0’

the case that

1 < 1 <
— > W /pk =+o and —- ) wp = +o.
Wo kZ:; k/ Pk Wy kZ:; k

4.2. Random ergodic environments

Regarding the criteria of recurrence and transience in the case of fixed
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ergodic environments, we have already proved that the behaviours of
recurrence and transience for the Markov chains (Xp),sq, (X5),s0 are tied

together and depend on the convergence or not of the series

~+00 Wk —+00 ' d —+00 1
kzzllp—k,k;wk an kz;—wk'Pk'

In the case of random ergodic environments the recurrence and
transience are properties which are true for p almost every environment
o € Q or for u almost no environment, because the system (€, 3, w, 0) is

supposed to be ergodic. This is true in general for a random walk in ergodic
random environment which is irreducible.

In order to investigate suitable criteria for the transience and recurrence
of the corresponding Markov chains representing uniquely by directed
circuits and weights a discrete-time birth-death chain in a random ergodic
environment, we may use the criteria given in the study for fixed ergodic

environments for the chains (X;),sq, (Xp),so restricted to the half-lines

[j, +0) with reflection in j.
Therefore, we have the following:

Proposition 8. The discrete-time birth-death chain (X,),, in random

ergodic random environments defined as above, is transient, for p-a.e.
environment o e Q, if and only if its “adjoint” Markov chain (Xp),sq is

positive recurrent and reciprocally. Moreover, the adjoint Markov chains
(Xn)hso @nd (Xp),so are null recurrent simultaneously.

Proof. Taking into account the Birkhoff’s ergodic theorem we have

n—+oo N

n
lim lZ:Iog b (®) = ¢ < +o0, p-a.e.
k=1

Taking the following cases we obtain:
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(@) ¢ < 0. We may write
k
Wi (@) = Hbd((o) ~ e keN,
d=1

for the sequence of weights (W (o)), n* Of the Markov chain (Xp ),

+00
Therefore, we get )’ wy (@) < +o0, p-ae.
k=1

For the “adjoint” Markov chain (Xy),,. we have

K -1
Wk(m)z(Hﬁd(w)] ~e ™’ keN,
d=1

for the sequence of weights (wj (o)), .+ Of the Markov chain (Xp )50 SO

+00
we get Z Wi (w) = +oo, p-a.e. By using the criterion given in Subsection 4.1
k=1

for the Markov chains (Xp),5q. (Xf),5o restricted to the half-line [j, +oc)
with reflection in j, we have that the restricted Markov chain (Xp),sq is
positive recurrent on [j, +oc), while the restricted Markov chain (Xp)s is

transient.

(b) ¢ > 0. We get symmetrical results. By using an analogous way given
in the case (a), we have that the restricted Markov chain (X, ), is transient

on [j, +oc), while the restricted Markov chain (X[,) . is positive recurrent.

(c) ¢ =0. Regarding the ergodic theorem, it is well-known that the
n-1

averages % Z(foek) take infinitely many values greater than the limit and
k=0

infinitely many values smaller than the limit. Therefore, in the sequence of
weights (Wi (©)) o (Wi (@), cpy» TOrae. o € Q, infinitely many values in

both directions are greater than 1. Consequently we may have
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By using criteria of null recurrence for the restricted chains (X))

Chrysoula Ganatsiou
+00 +00
D Wi (@) = D" Wi (o) =+, p-ae.
k=1 k=1

n>0’

(Xh)pso to the half-line [j, +o0) with reflection in j, in the case of fixed

ergodic environments, we may also have that both chains are null recurrent
on N, forp-a.e. o e Q.
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