Far East Journal of Applied Mathematics
© 2016 Pushpa Publishing House, Allahabad, India
Published: September 2016
http://dx.doi.org/10.17654/AM095030215
Volume 95, Number 3, 2016, Pages 215-227

UNIQUENESS OF MEROMORPHIC FUNCTIONS THAT SHARE FIXED POINTS

Harina P. Waghamore and Sangeetha Anand
Department of Mathematics
Jnanabharathi Campus
Bangalore University
Bangalore - 560056, India
e-mail: harinapw@gmail.com
sangeetha.ads13@gmail.com

Abstract

In this paper, we study the uniqueness of meromorphic functions that share fixed points. The result obtained in this paper extends the result due to Lei et al. [3].

1. Introduction and Main Results

Let f be a non-constant meromorphic function in the whole complex plane. We adopt the standard notations in the Nevanlinna theory of meromorphic functions: (see [1, 2])

$$
T(r, f), m(r, f), N(r, f), \bar{N}(r, f), N(r, 1 / f), \ldots
$$

By $S(r, f)$, we denote any quantity satisfying $S(r, f)=o(T(r, f))$, as $r \rightarrow \infty$, possibly outside a set of r with finite linear measure.

Received: May 18, 2016; Accepted: August 30, 2016
2010 Mathematics Subject Classification: Primary 30D35.
Keywords and phrases: uniqueness, meromorphic functions, fixed points, sharing value.

Let a be a finite complex number and k be a positive integer. We denote by $N_{k}\left(r, \frac{1}{f-a}\right)$ the counting function for zeros of $f(z)-a$ in $|z| \leq r$ with multiplicity $\leq k$ and by $\bar{N}_{k}\left(r, \frac{1}{f-a}\right)$ the corresponding one for which multiplicity is not counted. Let $N_{(k}\left(r, \frac{1}{f-a}\right)$ be the counting function for zeros of $f(z)-a$ in $|z| \leq r$ with multiplicity $\geq k$ and $\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)$ the corresponding one for which multiplicity is not counted.

Set

$$
N_{k}\left(r, \frac{1}{f-a}\right)=\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-a}\right)+\cdots+\bar{N}_{(k}\left(r, \frac{1}{f-a}\right) .
$$

Let f and g be two non-constant meromorphic functions. We say that f, g share the value $a \mathrm{CM}$ (counting multiplicities) if f, g have the same a-points with the same multiplicities and we say that f, g share the value $a \mathrm{IM}$ (ignoring multiplicities) if we do not consider the multiplicities. We denote by $\bar{N}_{L}\left(r, \frac{1}{f-a}\right)$ the counting function for a-points of both f and g about which f has larger multiplicity than g, where multiplicity is not counted. Similarly, we have notation $\bar{N}_{L}\left(r, \frac{1}{g-a}\right)$.

Fang and Hua [4] and Yang and Hua [5] obtained the following unicity theorem:

Theorem A. Let $f(z), g(z)$ be two non-constant meromorphic(entire) functions, let $n \geq 11(\geq 6)$ be a positive integer. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share $1 C M$, then either $f(z)=c_{1} e^{c z}, g(z)=c_{2} e^{-c z}$, where c_{1}, c_{2} and c are three non-zero constants satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$ or $f(z)=\operatorname{tg}(z)$ for a constant t such that $t^{n+1}=1$.

In 2000, Fang and Qiu [6] proved the following result:
Theorem B. Let $f(z), g(z)$ be two non-constant meromorphic functions, let $n \geq 11$ be a positive integer. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share $z C M$, then either $f(z)=c_{1} e^{c z^{2}}, g(z)=c_{2} e^{-c z^{2}}$, where c_{1}, c_{2} and c are three non-zero constants satisfying $4\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$ or $f(z)=\operatorname{tg}(z)$ for a constant t such that $t^{n+1}=1$.

In 2002, Fang [7] proved the following result:
Theorem C. Let $f(z), g(z)$ be two non-constant entire functions, let n, k be two positive integers with $n>2 k+4$. If $\left(f^{n}\right)^{(k)}$ and $\left(g^{n}\right)^{(k)}$ share $1 C M$, then either $f(z)=c_{1} e^{c z}, g(z)=c_{2} e^{-c z}$, where c_{1}, c_{2} and c are three non-zero constants satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n}(n c)^{2 k}=1$ or $f(z)=\operatorname{tg}(z)$ for a constant t such that $t^{n}=1$.

Recently, Xu et al. [8] proved the following theorem:
Theorem D. Let $f(z), g(z)$ be two non-constant meromorphic functions, let n, k be two positive integers with $n \geq 3 k+11$. If $\left(f^{n}\right)^{(k)}$ and $\left(g^{n}\right)^{(k)}$ share $z C M ; f(z)$ and $g(z)$ share $\infty I M$, then either $f(z)=$ $c_{1} e^{c z^{2}}, g(z)=c_{2} e^{-c z^{2}}$, where c_{1}, c_{2} and c are three non-zero constants satisfying $4 n^{2}\left(c_{1} c_{2}\right)^{n} c^{2}=-1$ or $f(z)=\operatorname{tg}(z)$ for a constant t such that $t^{n}=1$.

Recently, Lei et al. [3] improved Theorem D as follows:
Theorem E. Let $f(z), g(z)$ be two non-constant meromorphic functions, let n, k be two positive integers with $n \geq 3 k+7$. If $\left(f^{n}\right)^{(k)}$ and $\left(g^{n}\right)^{(k)}$ share $z C M ; f(z)$ and $g(z)$ share $\infty I M$, then: (1) $f(z)=\operatorname{tg}(z)$
for $k \geq 2$; (2) either $f(z)=c_{1} e^{c z^{2}}, g(z)=c_{2} e^{-c z^{2}}$ or $f(z)=\operatorname{tg}(z)$ for $k=1$, where c_{1}, c_{2} and c are three non-zero constants satisfying $4 n^{2}\left(c_{1} c_{2}\right)^{n} c^{2}=-1$ and t is a constant such that $t^{n}=1$.

In this paper, we define

$$
P(w)= \begin{cases}a_{m} w^{m}+a_{m-1} w^{m-1}+\cdots+a_{1} w+a_{0}, & m>0 \tag{1}\\ a_{0}, & m=0\end{cases}
$$

where m is a non-negative integer, $a_{0} \neq 0, a_{1}, \ldots, a_{m-1}, a_{m} \neq 0$ are complex constants and hence we extend Theorem E by obtaining the following result:

Theorem 1. Let $f(z), g(z)$ be two non-constant meromorphic functions, let n, k and m be three positive integers with $n \geq 3 k+m+8, \quad P(f)$ be defined as in (1). If $\left(f^{n} P(f)\right)^{(k)}$ and $\left(g^{n} P(g)\right)^{(k)}$ share $z C M ; f(z)$ and $g(z)$ share $\infty I M$, then one of the following two cases holds:
(i) $f(z) \equiv \operatorname{tg}(z)$ for a constant t such that $t^{d}=1$, where $d=$ $G C D(n+m, \ldots, n+m-i, \ldots, n), a_{m-i} \neq 0$ for some $i=0,1, \ldots, m ;$
(ii) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$
\begin{aligned}
R\left(w_{1}, w_{2}\right)= & w_{1}^{n}\left(a_{m} w_{1}^{m}+a_{m-1} w_{1}^{m-1}+\cdots+a_{1} w_{1}+a_{0}\right) \\
& -w_{2}^{n}\left(a_{m} w_{2}^{m}+a_{m-1} w_{2}^{m-1}+\cdots+a_{1} w_{2}+a_{0}\right) .
\end{aligned}
$$

2. Preliminary Lemmas

Lemma 2.1 (See [9]). Let $f(z)$ be a non-constant meromorphic function satisfying $f^{(k)}(z) \neq 0$, let k be a positive integer. Then

$$
N\left(r, \frac{1}{f^{(k)}}\right) \leq N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)
$$

Lemma 2.2 (See [3]). Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions. If $f(z)$ and $g(z)$ share $1 C M ; f(z)$ and $g(z)$ share ∞ IM, then one of the following cases must occur:
(i) $T(r, f)+T(r, g) \leq 2\left\{N_{2}\left(r, \frac{1}{f}\right)+N_{2}\left(r, \frac{1}{g}\right)\right\}$

$$
+4 \bar{N}(r, f)+2\left\{\overline{N_{L}}(r, f)+\overline{N_{L}}(r, g)\right\}+S(r, f)+S(r, g)
$$

(ii) either $f(z) g(z) \equiv 1$ or $f(z) \equiv g(z)$.

By using the same method as in Lemma 5 of [8], we obtain the following lemma:

Lemma 2.3 (See [8]). Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions, $P(f)$ be defined as in (1), $n>0, k>0$ and $m \geq 0$ be three integers with $n>2 k+m+1$. If $\left[f^{n} P(f)\right]^{(k)}=\left[g^{n} P(g)\right]^{(k)}$, then $f^{n} P(f)=g^{n} P(g)$.

Lemma 2.4 (See [10]). Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions, $n(\geq 1), k(\geq 1), m(\geq 1)$ be three integers. Then $\left[f^{n} P(f)\right]^{(k)} \cdot\left[g^{n} P(g)\right]^{(k)} \neq z^{2}$.

3. Proof of Theorem 1

Let $P(f)$ be defined as in (1). Set $F=f^{n} P(f), G=g^{n} P(g)$. Thus, $\frac{F^{(k)}}{z}$ and $\frac{G^{(k)}}{z}$ share $1 \mathrm{CM} ; \frac{F^{(k)}}{z}$ and $\frac{G^{(k)}}{z}$ share ∞ IM. Suppose that

$$
\begin{aligned}
& T\left(r, \frac{F^{(k)}}{z}\right)+T\left(r, \frac{G^{(k)}}{z}\right) \\
\leq & 2\left\{N_{2}\left(r, \frac{z}{F^{(k)}}\right)+N_{2}\left(r, \frac{z}{G^{(k)}}\right)\right\}+4 \bar{N}\left(r, \frac{F^{(k)}}{z}\right)
\end{aligned}
$$

$$
\begin{equation*}
+2\left\{\bar{N}_{L}\left(r, \frac{F^{(k)}}{z}\right)+\bar{N}_{L}\left(r, \frac{G^{(k)}}{z}\right)\right\}+S(r, f)+S(r, g) \tag{2}
\end{equation*}
$$

We note that

$$
\begin{align*}
& N_{2}\left(r, \frac{1}{F^{(k)}}\right)+N_{2}\left(r, \frac{1}{G^{(k)}}\right) \\
\leq & N\left(r, \frac{1}{F^{(k)}}\right)-\left(N_{(3}\left(r, \frac{1}{F^{(k)}}\right)-2 \bar{N}_{(3}\left(r, \frac{1}{F^{(k)}}\right)\right) \\
& +N\left(r, \frac{1}{G^{(k)}}\right)-\left(N_{(3}\left(r, \frac{1}{G^{(k)}}\right)-2 \bar{N}_{(3}\left(r, \frac{1}{G^{(k)}}\right)\right) . \tag{3}
\end{align*}
$$

If z_{0} is a zero of $f(z)$ with multiplicity p, then z_{0} is a zero of $\left[f^{n} P(f)\right]^{(k)}$ with multiplicity $n p-k$, we have

$$
\begin{equation*}
N_{(3}\left(r, \frac{1}{F^{(k)}}\right)-2 \bar{N}_{(3}\left(r, \frac{1}{F^{(k)}}\right) \geq(n-k-2) N(r, 1 / f) . \tag{4}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
N_{(3}\left(r, \frac{1}{G^{(k)}}\right)-2 \bar{N}_{(3}\left(r, \frac{1}{G^{(k)}}\right) \geq(n-k-2) N(r, 1 / g) \tag{5}
\end{equation*}
$$

By equations (2)-(5), we have

$$
\begin{aligned}
& T\left(r, \frac{1}{F^{(k)}}\right)+T\left(r, \frac{1}{G^{(k)}}\right) \\
\leq & T\left(r, \frac{z}{F^{(k)}}\right)+T\left(r, \frac{z}{G^{(k)}}\right)+2 \log r \\
\leq & T\left(r, \frac{F^{(k)}}{z}\right)+T\left(r, \frac{G^{(k)}}{z}\right)+2 \log r+O(1) \\
\leq & 2\left(N\left(r, \frac{1}{F^{(k)}}\right)+N\left(r, \frac{1}{G^{(k)}}\right)\right)+4 \bar{N}(r, f)
\end{aligned}
$$

$$
\begin{align*}
& +2(k+2-n)\left(N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g}\right)\right) \\
& +6 \log r+2\left\{\bar{N}_{L}\left(r, \frac{F^{(k)}}{z}\right)+\bar{N}_{L}\left(r, \frac{G^{(k)}}{z}\right)\right\}+S(r, f)+S(r, g) \tag{6}
\end{align*}
$$

Note that

$$
\begin{align*}
(n+m) m\left(r, \frac{1}{f}\right) & =m\left(r, \frac{1}{F}\right) \leq m\left(r, \frac{1}{F^{(k)}}\right)+S(r, f) \\
& \leq T\left(r, \frac{1}{F^{(k)}}\right)-N\left(r, \frac{1}{F^{(k)}}\right)+S(r, f) \tag{7}
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
(n+m) m\left(r, \frac{1}{g}\right) \leq T\left(r, \frac{1}{G^{(k)}}\right)-N\left(r, \frac{1}{G^{(k)}}\right)+S(r, g) \tag{8}
\end{equation*}
$$

From equations (6)-(8) and Lemma 2.1, we have

$$
\begin{align*}
& (n+m)[T(r, f)+T(r, g)] \\
\leq & N\left(r, \frac{1}{F^{(k)}}\right)+N\left(r, \frac{1}{G^{(k)}}\right)+(2 k+4+m-n)\left(N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g}\right)\right) \\
& +6 \log r+4 \bar{N}(r, f)+2\left\{\bar{N}_{L}\left(r, \frac{F^{(k)}}{z}\right)+\bar{N}_{L}\left(r, \frac{G^{(k)}}{z}\right)\right\} \\
& +S(r, f)+S(r, g) \\
\leq & 2(k+m+2)\left(N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g}\right)\right)+(2 k+4) \bar{N}(r, f) \\
& +6 \log r+2\left\{\bar{N}_{L}\left(r, \frac{F^{(k)}}{z}\right)+\bar{N}_{L}\left(r, \frac{G^{(k)}}{z}\right)\right\}+S(r, f)+S(r, g) . \tag{9}
\end{align*}
$$

Noting that $\left[f^{n} P(f)\right]^{(k)}$ and $\left[g^{n} P(g)\right]^{(k)}$ share $z \mathrm{CM} ; f(z)$ and $g(z)$ share ∞ IM, we have

$$
2\left\{\bar{N}_{L}\left(r, \frac{F^{(k)}}{z}\right)+\bar{N}_{L}\left(r, \frac{G^{(k)}}{z}\right)\right\} \leq \bar{N}(r, f)+\bar{N}(r, g)
$$

From (9), we have

$$
\begin{align*}
& (n+m)(T(r, f)+T(r, g)) \\
\leq & 2(k+m+2)\left(N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g}\right)\right)+(k+3)(\bar{N}(r, f)+\bar{N}(r, g)) \\
& +6 \log r+S(r, f)+S(r, g) \tag{10}
\end{align*}
$$

Next, we consider two cases:
Case 1. Either $f(z)$ or $g(z)$ is a transcendental meromorphic function. If $n>3 k+m+8$, then it follows from (10) that

$$
T(r, f)+T(r, g) \leq 6 \log r+S(r, f)+S(r, g)
$$

a contradiction. If $n=3 k+m+8$, then from (10), we get

$$
N_{(2}(r, f)=S(r, f), \quad N_{(2}(r, g)=S(r, g)
$$

Thus,

$$
\bar{N}_{L}\left(r, \frac{F^{(k)}}{z}\right)=S(r, f), \quad \bar{N}_{L}\left(r, \frac{G^{(k)}}{z}\right)=S(r, g)
$$

It follows from (9) that

$$
T(r, f)+T(r, g) \leq 6 \log r+S(r, f)+S(r, g)
$$

a contradiction.
Case 2. Both $f(z)$ and $g(z)$ are two non-constant rational functions. If $f(z)$ is a polynomial, then $g(z)$ is a polynomial. Thus, from (9),

$$
8 \log r \leq(k+3)(T(r, f)+T(r, g)) \leq 6 \log r+O(1)
$$

a contradiction. Thus, both $f(z)$ and $g(z)$ are non-polynomial rational functions. By (10), we have

$$
\begin{align*}
& 2(k+m+2)\left(m\left(r, \frac{1}{f}\right)+m\left(r, \frac{1}{g}\right)\right) \\
& +(k+3)\left(N_{(2}(r, f)+N_{(2}(r, g)-\bar{N}_{(2}(r, f)-\bar{N}_{(2}(r, g)\right) \\
& +(k+3)(m(r, f)+m(r, g)) \leq 6 \log r+O(1) \tag{11}
\end{align*}
$$

Set

$$
f(z)=\frac{p_{2}(z)}{p_{1}(z)} ; \quad g(z)=\frac{q_{2}(z)}{q_{1}(z)}
$$

where both $p_{1}(z), p_{2}(z)$ and $q_{1}(z), q_{2}(z)$ are co-prime polynomials.
If $\operatorname{deg} p_{2}>\operatorname{deg} p_{1}$, then $m(r, f)=\left(\operatorname{deg} p_{2}-\operatorname{deg} p_{1}\right) \log r$. It follows from (11) that

$$
N_{(2}(r, f)=0, \quad N_{(2}(r, g)=0 .
$$

Thus,

$$
\bar{N}_{L}\left(r, \frac{F^{(k)}}{z}\right)=0, \quad \bar{N}_{L}\left(r, \frac{G^{(k)}}{z}\right)=0 .
$$

It follows from (9) that

$$
\begin{aligned}
6 \log r \leq & T(r, f)+T(r, g)+(2 k+2 m+4)\left(m\left(r, \frac{1}{f}\right)+m\left(r, \frac{1}{g}\right)\right) \\
& +(k+2)(m(r, f)+m(r, g)) \\
\leq & 6 \log r+O(1) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
f(z)=\frac{a_{2} z^{2}+a_{1} z+a_{0}}{\left(z-z_{1}\right)} ; \quad g(z)=\frac{b_{1} z+b_{0}}{\left(z-z_{1}\right)} \tag{12}
\end{equation*}
$$

where $a_{2}, a_{1}, a_{0}, b_{1}, b_{0}$ are constants with $a_{2} b_{1} \neq 0$. From (12), we have

$$
\left(f^{n} P(f)\right)^{(k)}=\frac{P(z)}{\left(z-z_{1}\right)^{n+m+k}} ; \quad\left(g^{n} P(g)\right)^{(k)}=\frac{Q(z)}{\left(z-z_{1}\right)^{n+m+k}},
$$

where $P(z), Q(z)$ are polynomials with $\operatorname{deg} P=2(n+m)$ and $\operatorname{deg} Q=n$ $+m-1$. Thus, $\left(f^{n} P(f)\right)^{(k)}-z$ has $2(n+m)$ zeros (counting multiplicity) but $\left(g^{n} P(g)\right)^{(k)}-z$ has only $(n+m+k+1)$ zeros (counting multiplicity). This contradicts $\left(f^{n} P(f)\right)^{(k)}$ and $\left(g^{n} P(g)\right)^{(k)}$ share z CM. Thus, deg $p_{2} \leq$ $\operatorname{deg} p_{1}$. If $\operatorname{deg} p_{2}<\operatorname{deg} p_{1}$, then $m(r, 1 / f)=\left(\operatorname{deg} p_{1}-\operatorname{deg} p_{2}\right) \log r$. It follows from (11) that

$$
2(k+m+2) m(r, 1 / f) \leq 6 \log r+O(1)
$$

and $N_{(2}(r, f)=0, N_{(2}(r, g)=0$. Thus,

$$
\bar{N}_{L}\left(r, \frac{F^{(k)}}{z}\right)=0, \quad \bar{N}_{L}\left(r, \frac{G^{(k)}}{z}\right)=0 .
$$

From (9),

$$
8 \log r \leq T(r, f)+T(r, g)+2(k+m+2) m\left(r, \frac{1}{f}\right) \leq 6 \log r+O(1)
$$

a contradiction. Thus, $\operatorname{deg} p_{2} \geq \operatorname{deg} p_{1}$. Hence, $\operatorname{deg} p_{2}=\operatorname{deg} p_{1}$. Thus, by (11), we have

$$
\begin{align*}
& (k+3)\left(N_{(2}(r, f)+N_{(2}(r, g)-\bar{N}_{(2}(r, f)-\bar{N}_{(2}(r, g)\right) \\
\leq & 6 \log r+O(1) . \tag{13}
\end{align*}
$$

If $f(z)$ has a pole with multiplicity atleast 3 , then by (13), we have

$$
8 \log r \leq 2(k+3) \log r \leq 6 \log r+O(1)
$$

a contradiction. If $f(z)$ has two multiple poles, then by (13), we have

$$
8 \log r \leq 2(k+3) \log r \leq 6 \log r+O(1),
$$

a contradiction. Thus, $f(z)$ has at most one multiple pole and its multiplicity is 2 . Similarly, we can get that $g(z)$ has one multiple pole with multiplicity 2. If both $f(z)$ and $g(z)$ have one multiple pole, then by (13), we have

$$
8 \log r \leq 2(k+3) \log r \leq 6 \log r+O(1),
$$

a contradiction. If $f(z)$ has single multiple pole and $g(z)$ has only simple poles, then

$$
\begin{align*}
& f(z)=\frac{a_{t} z^{t}+a_{t-1} z^{t-1}+\cdots+a_{0}}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right) \cdots\left(z-z_{t-1}\right)} \\
& g(z)=\frac{b_{t-1} z^{t-1}+\cdots+b_{0}}{\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{t-1}\right)} \tag{14}
\end{align*}
$$

where $z_{l} \quad(l=1,2, \ldots, t-1)$ are distinct complex numbers and a_{i} $(i=0,1, \ldots, t), b_{j}(j=0,1, \ldots, t-1)$ are constants with $a_{t} b_{t-1} \neq 0$. From (14), we have

$$
\begin{aligned}
& \left(f^{n} P(f)\right)^{(k)}=\frac{P_{1}(z)}{\left(z-z_{1}\right)^{2 n+2 m+k}\left(z-z_{2}\right)^{n+m+k} \cdots\left(z-z_{t-1}\right)^{n+m+k}} \\
& \left(g^{n} P(g)\right)^{(k)}=\frac{Q_{1}(z)}{\left(z-z_{1}\right)^{n+m+k}\left(z-z_{2}\right)^{n+m+k} \cdots\left(z-z_{t-1}\right)^{n+m+k}},
\end{aligned}
$$

where $P_{1}(z), Q_{1}(z)$ are polynomials with $\operatorname{deg} P_{1} \leq n t+k t+m t-2 k-1$ and $\operatorname{deg} Q_{1} \leq n t+k t+m t-n-2 k-1$. Thus, $\left(f^{n} P(f)\right)^{(k)}-z$ has $n t+k t$ $+m t-k+1$ zeros (counting multiplicity) but $\left(g^{n} P(g)\right)^{(k)}-z$ has only $(n t+k t+m t-n-k+1)$ zeros (counting multiplicity). This contradicts $\left(f^{n} P(f)\right)^{(k)}$ and $\left(g^{n} P(g)\right)^{(k)}$ share z CM. Similarly, if $g(z)$ has single pole and $f(z)$ has only simple poles, then we get a contradiction. Therefore, both $f(z)$ and $g(z)$ have only simple poles, then we have

$$
\left(f^{n} P(f)\right)^{(k)}=\frac{h_{1}(z)}{P_{2}(z)} ; \quad\left(g^{n} P(g)\right)^{(k)}=\frac{h_{2}(z)}{P_{2}(z)}
$$

where both $h_{1}(z), P_{2}(z)$ and $h_{2}(z), P_{2}(z)$ are co-prime polynomials with $\max \left\{\operatorname{deg} h_{1}, \operatorname{deg} h_{2}\right\}<\operatorname{deg} P_{2}$. Since $\left(f^{n} P(f)\right)^{(k)}$ and $\left(g^{n} P(g)\right)^{(k)}$ share $z \mathrm{CM}, h_{1}(z) \equiv h_{2}(z)$. Thus, $\left(f^{n} P(f)\right)^{(k)} \equiv\left(g^{n} P(g)\right)^{(k)}$. Therefore, by Lemma 2.2, we get either
(i) $\left(f^{n} P(f)\right)^{(k)} \equiv\left(g^{n} P(g)\right)^{(k)}$ or
(ii) $\left(f^{n} P(f)\right)^{(k)} \cdot\left(g^{n} P(g)\right)^{(k)} \equiv z^{2}$.

By Lemma 2.4, Case (ii) is impossible. By Lemma 2.3, we get $f^{n} P(f)$ $\equiv g^{n} P(g)$ from Case (i).

$$
\begin{align*}
& \Rightarrow f^{n}\left(a_{m} f^{m}+a_{m-1} f^{m-1}+\cdots+a_{0}\right) \\
& \equiv g^{n}\left(a_{m} g^{m}+a_{m-1} g^{m-1}+\cdots+a_{0}\right) \tag{15}
\end{align*}
$$

Let $h=f / g$, if h is constant. Then substituting $f=g h$ in (15), we get

$$
a_{m} g^{n+m}\left(h^{n+m}-1\right)+a_{m-1} g^{n+m-1}\left(h^{n+m-1}-1\right)+\cdots+a_{0} g^{n}\left(h^{n}-1\right)=0
$$

which implies $h^{d}=1$, where $d=(n+m, \ldots, n+m-i, \ldots, n), \quad a_{m-i} \neq 0$ for some $i=0,1, \ldots, m$. Thus, $f=\operatorname{tg}$ for a constant t such that $t^{d}=1$, where $d=(n+m, \ldots, n+m-i, \ldots, n), a_{m-i} \neq 0$ for some $i=0,1, \ldots, m$. If h is not constant, then f and g satisfy the algebraic equation $R(f, g)=0$, where

$$
\begin{aligned}
R\left(w_{1}, w_{2}\right)= & w_{1}^{n}\left(a_{m} w_{1}^{m}+a_{m-1} w_{1}^{m-1}+\cdots+a_{1} w_{1}+a_{0}\right) \\
& -w_{2}^{n}\left(a_{m} w_{2}^{m}+a_{m-1} w_{2}^{m-1}+\cdots+a_{1} w_{2}+a_{0}\right) .
\end{aligned}
$$

Hence the proof of Theorem 1.

Uniqueness of Meromorphic Functions ..
Note. When $P(w)=a_{0}$, then the above theorem reduces to Theorem E.

References

[1] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[2] L. Yang, Value Distribution Theory, Translated and Revised from the 1982 Chinese Original, Springer, Berlin, 1993.
[3] Chunlin Lei, Degui Yang and Mingliang Fang, Fixed-points and uniqueness of meromorphic functions, J. Pure Appl. Math.: Adv. Appl. 9(1) (2013), 1-15.
[4] M. L. Fang and X. H. Hua, Entire functions that share one value, J. Nanjing Univ. Math. Biquarterly 13(1) (1996), 44-48.
[5] C.-C. Yang and X. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22(2) (1997), 395-406.
[6] M. L. Fang and H. L. Qiu, Meromorphic functions that share fixed-points, J. Math. Anal. Appl. 268 (2000), 426-439.
[7] M.-L. Fang, Uniqueness and value-sharing of entire functions, Comput. Math. Appl. 44(5-6) (2002), 823-831.
[8] J.-F. Xu, F. Lü and H.-X. Yi, Fixed-points and uniqueness of meromorphic functions, Comput. Math. Appl. 59(1) (2010), 9-17.
[9] H. X. Yi and C. C. Yang, Unicity Theory of Meromorphic Functions, Science Press, Beijing, 1995.
[10] H. P. Waghamore, A. Tanuja and N. Shilpa, Fixed-points and uniqueness of entire and meromorphic functions, Int. Electron. J. Pure Appl. Math. 7(3) (2014), 99-107.

