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1. Introduction

Let Q be a connected polygona bounded domain in R? and v =
{vi,i=1 .., N,} beasetof N, isolated scattered pointsin Q.

A collection A={T;};_, of trianglesis said to be a triangulation of Q
provided that:
ma=T.
iel
(2) The intersection of any two trianglesis either empty, a single point or
acommon edge.
We are aware of the fact that given any set v = {v;,i =1, ..., N} of

scattered isolation pointsin Q, there are many triangulations of ©Q based on
v, i.e., where the set of the vertices of all trianglesis exactly the set of al v.
Practically, it is often a Delaunay triangulation which is given, but thereafter,
we are not going to use any specific property of any triangulation.

We focus the case where each triangle of A is subdivided into three
sub-triangles by joining each vertex to an interior point. Such triangulation
is known as Clough-Tocher type [1, 2, 6, 9-11], and we denote this
triangulation by Act. We let, in view of simplification, this point to be the
centroid.

The paper is organized as follows: In the following section, we introduce
some hotations and recall some basic results. Then, we present our process

for constructing of afinite element of class cl of HCT typein Section 3.

2. Preliminaries

For a function S e C'(Q), we denote respectively by CP(v) and
CY o) thefact that Sis CP around the vertex v e v, and C% across the

edge o € Z, the set of edges.
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Let us recall from Ciarlet [5] that a finite element is a triplet (K, £, £),

where K is apolygon, £ isaspace of functionsand £ € £ is afinite set
of degrees of freedom, defined on K, that enable us to build up functionsin
&. The degrees of freedom are aso called nodal valueson K.

L is € -unisolvent iff:
(1) cardL =dim¢é,

(2 If £ beingtheset £ ={l;,i =1 ..., dim¢&}, thengiven v e £ such
that lj(v)=0,i =1, .., dim¢&, then v=0.

Moreover, Ciarlet [5], a finite element (K, £, £) is of cass C" if,
whenever it is used to define the restriction to £ of a (global) function S
then Shas a (global) smoothnessr.

Spline functions and finite elements approximation are close techniques.
Constructing locally supported spline functions is quite easy when dealing
with finite eements. In this case, the support of the spline is reduced to an
element and its neighbors in the triangulation. Moreover, the explicit
construction can be made for each element individualy. For this purpose,
polynomial finite elements have been heavily studied.

To conclude this section, we give some notations:

Given B = (By, - Bq) € Nd, where d is a nonnegative integer, we let

d d
[Bl=D B and p=]]Bi
i=1 i=1
For B = (By, B2, B3) € N° and p = (ug, g, pa) € R3,

3
Wb =TTul.
i=1

Given T = (A, Ay, Ag) atriangle with vertices A, A, and Ag. The
barycentric coordinates p = (uq, 1o, n3) of apoint M relative of T is the
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unique solution of the system:

3
ZHiA =M, (1)
i-1

lnf=1.

Let B =(By, Bp. B3) e N° be such that |B|=r (reN). For all
functions f very smooth, we define

5\B\f(M)

PrM) = oo

and Df(M)= Y E—inﬁaﬁf(l\ﬂ),
|Bl=r

with the partia derivative and the rth directiona derivative of f in the
direction n=(ng, N2, M3); |n|=0. For i=123 ¥ and y, denote

respectively the first and the second variable of A apoint of R,

For r =1, we get:

(& et L
Dy (M) =| 21 |5 (M)+] D midh | 55 (M), &)
i=1 i=1

For r = 2, we get:

2 3 282f
an(M)=[an] —M)
i-1 OX

3

3 3 o2t ® 02
+ Z[ZHWMZWMJM(M)+[Zniyi} —(M).
i=1 oy

i=1 i=1
3. Finite Element of Class C1

3.1. Introduction

In this section, we revisit the Hiesh-Clough-Tocher (HCT) finite element

and provethat it is of class o
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It is well known that if X = (A, Ay, Ag) isa non-degenerated triangle
with vertices A, A and Ag and d is a positive integer, a polynomial P of
degree d can be written in Bernstein-Bezier form:
d!
P = Y, Cla)u®, @
lo|=d

where p = (yg, pp, n3) denotes the barycentrics coordinates of a point M

relative to the triangle K and o = (a4, a5, ag) € N3 suchthat | o | = d.
To the coefficients C(a), a = (a4, ap, a3), named Bernstein-Bezier

coefficient or B-coefficients or ordinates of Bezier, the following are points
P, of thetriangle, where

Pazal'Aﬂ.+a2dA2+a3%;|a|:d. (5)

The set {(P,; C(a)), |a| = d} is the set of control points in R3,
Representing the points in the triangle leads to the representation of the
Bernstein-Bezier of a polynomial and emphases some geometrical properties
such as, being collinear for some of them, convex hull property and so on.
Werefer to[3, 4, 7, 11] for more details on Bernstein-Bezier representation.

Suppose now K = (A, Ay, Ag) with vertices A, A» and A3 be a
triangle of Aqt, subdivided into three triangles K1, Ko and K3 such as
Ki = (As2, A» A1), Where Ay is the centroid of £ and A = A3 for
i >0.

Consider over K the degree of freedom defined by the set:
1 o ; . cof &
) ={a f(A),l=1,2,3,|oc|sla—n_(A1),|=L2,3}, (6)
|

where A is a strictly interior point of the edge o; = [A_1, A,4] for
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i=12and3 with A,3=A for i >0 and %(E) is the normal
|

derivative of f relative to this edge.

Let P3 be the space of polynomials of degree 3 over £ and
PP3(K) = {S e C%K), S| ke P3. i =1 2, 3}.

This triplet (K, PP3(K), Z}C) is the well-known HCT finite element

whichisof class C! anditis represented by Figure 1 below.

Figure 1. Degree of freedom for k = 1.

We notice that the degree of freedom available on each sub-triangle C;
islessthat it is needed to construct a polynomial R of degree 3 on this sub-

triangle. It remains 3 to be able to determine all coefficients of which could
be represented in Bernstein-Bezier form:

Ri)= Y Gla)uf, ™
|a|=3

where p; = (ui1, Mi2, 1j3) denotes the barycentrics coordinates of a point
M; relative to the triangle ;.

For al points M; € Kj, R(wj)= f(M;) and D, f(M;)=DyR (1),

where
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DR() =3 Y Cla)(n) 2

|o|=2
with Gl(a) (n) = G (e + &1) + G (e + &2) + MG (o + £3)
and ¢; denotesthe ith vector of the canonical basis of RS for i = 12 3

3.2. Deter mination of unknown coefficients

The process of determination of the B-coefficients is the same on each
sub-triangle, so let us consider a generic triangle 7 = (A, B, C) with

vertices A(Xa; Ya), B(Xg; yg) and C(xc; yc) using the following degree
of freedom:

O (M) 0*(C), || <1 (B

where B(X; y) is the midpoint of the edge oc and % is the normal

derivative of f relative to this edge.

If P isa polynomial of degree 3 expressed in Bernstein-Bezier form (4)
on 7 and C(a) denotesits B-coefficients, we get:
C(3,0,0) = f(A),
C(0, 0, 3) = f(C),
0(2.1.0)= 1(A)+3| (% ~ Xa) 5 (A + (5 - yA)—<A>}
c(2,0,) = f(A)+— (1 = x) 5 (A + (e -y 3 (A
Ot 0,2) = 1(0) + 3| (xa = Xc) 5 (©) + (Y - YC)—(C) ,

C(0.1,2)= F(C)+ 5 (X8 ~ Xc) 5 (C) + (¥ - yc)—<c>}

and
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CL 1Y

- %[c(s, 0,0)+C(0,0,3)+3(C(2,0,1)+C(1 0, 2)) - 2C(2 1, 0) + C(0, 1, 2))]
-2 6 - 0L @)+ (6 - 95 B)]

The unknown coefficients are in K1, Ci(4 2, 0), Ci(0, 3,0) and
Ci(0,2,1) and in Ky, Cy(l, 2 0), Cy(0,30) and Cy(0, 2 1), where
Ci(L, 2, 0) = C»(0, 2, 1) and C;(0, 3, 0) = Cx(0, 3, 0).

By associating on each sub-triangle the B-coefficients, it comes on the
triangle K, 19 points presented on Figure 2 below. The open circles

designate the known coefficients and the full circles those which are
unknown.

Figure 2. Bernstein-Bezier coefficientsfor k = 1.
Let P,lc be a set of spline functions defined as follows:
Pt = {Se CYK), S|, e P3,i =12 3}. (8)

We are now in position to explain the process of determining on each

sub-triangle the remaining three coefficients to get a spline of class ct on
K. We begin by considering K = (A, Ay, Ag), the black triangle with

vertices A =B, A, =C and Ag=A and K = (By, By, Bg), the orange
triangle with vertices By, B, and Bs. It will be associated to the six known

coefficients of K, the set of degree of freedom:

50 = {(B )hpeies U {F (B Jyci <o Where Bj = (B +B).  (9)
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The triplet (IE,IPZ(IE), Z?Z) is Lagrange's finite element of Type 2. Let

uscal P to bethe polynomial of degree 2 defined on K with this degree of
freedom. It can be expressed as:

= ~ 2
P)= Y, ble)y® (10)
o |=2
where y = (y1, Y2, Y3) denotes the barycentrics coordinates of a point M
relative to the triangle K.

Let us consider the splitting of K derive from those of K and denote
by K = (Bi12, Ap, Bi;1) the triangle of vertices B, ,, Ay and B, for
i=12and 3 with B; = Bj,3, for i > 0. The restriction 75i of P ona
sub-triangle Izi can be written in the Bernstein-Bezier form like as:

= ~ 2
Pitvi)= ). by (o) 7" (11)
|o|=2
where y; = (vi1, Yi2, ¥j3) denotes the barycentrics coordinates of a point M
relative to the triangle IEi.

For dl i =1, 2, 3, the coefficients H(a) can be expressed in terms of
coefficients b(a.). For example, if i = 3 (i.e, K3 = (BAgBy)), we get:
bs(2, 0, 0) = b(0, 2, 0),
~ 1 ~ ~ ~
bs(L 1, 0) = 3[b(L, 1, 0) + b(0, 2, 0) +b(0, 1, 1),
bs(L 0,1) = b(1 1, 0),
bs(0, 2, 0) = %[6(2, 0,0)+ 2b(1, 1, 0) + 2b(1, 0, 1) (12)

+b(0, 2, 0)+ 2b(0, 1, 1) + b(0, 0, 2)],
~ 1 ~ ~ ~
b(0,1.1) = 3[b(2, 0, 0) + b(%, 1, 0) + b(1, 0, 1),
bs(0, 0, 2) = b(2, 0, 0).
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Now, by representing the coefficients of each polynomial 73i on I~Ci for

i =1, 2,3, we can associate a value to each unknown coefficient in K.
Then, we have to examine if with these values, we are able to determine al
coefficients of 73i and if the spline obtained on K is at least of class CL.

Therefore, we must express the restriction 73i+2 of 73i on /Ei +2 8 a

polynomial of degree 3. Thus, we need to raise the degree of 7~Di +2 from2to
3. Thisleadsto

Piralrisz) = . E%-(Pz(a)al(i(iz (13)
|a|=3

hence, the coefficients ﬁ(f)z(oc) can be expressed in terms of a +o(a) as, for

example i =1,

with

bi’(3,0,0) = by(2, 0, 0),

biP(2,1 0) = %53(1 1L0)+ %53(2, 0,0),
bi%(2,0,1) = %53(1 0,1)+ %53(2, 0, 0),
b1, 2, 0) = 2b41 1. 0) + 554(0, 2.0),
601,11 = 2511 0) + 2551 0,1 + (0. 1.9),
b{M(1, 0, 2) = 2by(1. 0,1) + 250, 0, 2),
b{Y(0, 3, 0) = b(0, 2, 0),

biY(0,2,1) = %53(0, 11+ %%(0’ 2,0),
b{P(0,1. 2) = 255(0, 1,1 + 250, 0, 2),
biY(0, 0, 3) = by(0, 0, 2).

(14)
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Aswe consider the restriction of P, on IEHZ to be 75, +2, theexpressions

of these two polynomials as elements of ]Pg(l%i +2) coincide so that, we can

express the set of B-coefficients Cj(B) of P on K; in terms of the
B-coefficients by, »(c.) of P, , relativeto Kj,,. Thus, let yi,, (resp., ;)
be the barycentrics coordinates of apoint M € Ki,» (resp., K;). It comes,

for example i =1,

3

31 = 5 M1,
3 1

Y32 = E(Mz - 5)’ (15)
3

33 = 5 M3

and Py(A1) = Ps(y3) means:

C1(3,0,0)= [965(2,0, 0)~ B65(1, 1, 0) + B5(0, 2, )]

C1(2,1,0)=7[303(2, 0,0)+ 205(1,1,0)-B3(0, 2, 0],

C1(2,0,1) = 7[35(2, 0, 0)- 45(1, 1, 0)+ 635(1, 0, )+ (0, 2, 0)~ 2650, 1. 1),
(1, 2,0)=b5(1,1,0),

Ca(1.1.1) = 7 [by(L. 1, 0)+ 3y(L, 0,1)- B3(0, 2, 0) + By(0,1. )],

C(1,0,2) = 5 [-2b5(1,1,0) + 6b5(L, 0, 1) + B3(0, 2, 0) - 4b3(0, 1, 1)+ 355(0,0, 2)],
C1(0,3,0)=b5(0, 2,0),

C1(0.2,1) = b5(0,1,),

C1(0,1,2) = 3[-b(0, 2, 0)+ 205(0, 1, 1)+ 35(0,0, 2)],

C1(0, 0,3)= 760, 2,0) - 855(0, 1.1+ 935(0, 0, 2)]

(16)
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but with the subdivision algorithm for example, we can express the
B-coefficients Cj(B) of 7 relative to K; in terms of the B-coefficients
Ci.1(B) relativeto Kj,q. Let A; be the barycentrics coordinates of a point
M e K; and P; bethe polynomial with B-coefficients C; (), we get:
M1 = A3 — Ao,
M2 = hp + 3k, (17)
M3 = —Az

and Py(Aq) = Po(ry) means:

C2(3, 0,0)= —01(3, 0,0)+ 901(2, 1,0)- 301(2, 0,1)- 27Cl(l, 2,0)+ 1801(1, 11
+27C4(0, 3,0)-3Cy(1, 0, 2)— 27C4(0, 2,1)+9C;(0, 1, 2)- C4(0, 0, 3),

C2(2, 1 O) = Cl(2, 1 O)— GCl(ZL 2, O) + ZCl(ZL 1 1) + 901(0, 3 0)— 601(0, 2, 1)
+Gi(0,1,2),

C(2,0,1) = Gy(3,0,0)~ 6Cy(2, 1, 0)+ 2G;(2, 0,1) + 9Cy(L 2, 0)— 6Cy(L 1, )
+Gi(1,0,2),

Ca(1, 2,0)=~Cy(1, 2, 0)+3C4(0, 3,0)~ C;(0, 2,1),

Co(L11)=-Cy(2,1,0)+3C,(1, 2,0~ C;(1, 1,1),

Cy(1,0,2)=~Cy(3,0,0)+3C;(2,1,0)~C;(2,0,1),

C»(0,3,0)= Ol(O 3,0),

C2(0,2,1)=Cy(1 2,0),

C2(0,1,2)=C(2.1,0),

C5(0,0,3)=Cy(3,0,0).

(18)

By reiterating the process on the triangles K; and K3 with the

polynomials P(%q) and P3(A3), we obtain:
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C3(3.0,0) = C4(0, 0, 3),

C3(21,0)=C(0,1,2),

C3(2,0,1) = —C4(1, 0, 2) +3C4(0, 1, 2) - C4(0, 0, 3),

Ca(L 2, 0) = Cy(0, 2,1),

3. 11) = -Ci(L 1, 1) +3G;(0, 2,1) - C(0,1, 2),

Ca(L 0, 2) = Cy(2, 0,1) ~ 6Cy(L, 1, 1) + 2y (L 0, 2) + 9C;(0, 2, 1) - 6C1(0, L, 2)
+¢4(0,0, 3),

C3(0, 3,0) = (0, 3,0),

C3(0, 2,1) = —C4(1, 2, 0) + 3C,(0, 3, 0)— C4(0, 2, 1),

C3(0,1, 2) = Cy(2, 1, 0)— 6Cy(1, 2, 0)+ 2C4(1, 1, 1) + 9C,(0, 3, 0) — 6C4(0, 2, 1)
+C1(0,1 2),

C3(0, 0,3) = —C4(3, 0, 0) + 9C1(2, 1, 0) - 3C;(2, 0, 1) — 27Cy (1, 2, 0) +18C4(1, 1, 1)
—3Cy(1, 0, 2) + 27C1(0, 3, 0) — 27C,(0, 2, 1) + 9C;(0, 1, 2) - C4(0, 0, 3)
+C4(0,1 2).

(19)

At this stage, al of B-coefficients of the polynomial in (4) are known
since the four remaining coefficients can be expressed according to b (o) as

follows;

Ci(L, 2, 0) = %(6(1 1,0)+b(0, 2, 0)+b(0, 1 1)),
C1(0, 3,0) = %(6(2, 0, 0)+ b(0, 2, 0) + b(0, 0, 2)
+2b(1, 1, 0)+ 2b(1, 0, 1) + 2b(0, 1, 1)), (20)
C,(0,2,1) = %(6(2, 0,0)+b(L 1 0)+b(L 0, 1)),
C,(1 2 0) = %(5(], 0,1)+b(0, 1 1)+ b(0, 0, 2)).

It remains to prove that the spline constructed in this way on K is of

class cL.

3.3. Determination of the class

The aim of this section is to prove that our spline is of class cl To
achieve this goal, we consider the triangle K = (A, Ay, Ag) with vertices
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A, A and Ag; Ay the centroid of £ and the three polynomials Py, P,

and P3 with A = A,3 and P; = Pj,3 for i > 0. We have to prove that:
0%P; = 0“Pj,q, dong [Ay; Asp] fori=123 (21)

foral o e N°, suchas|a|<1.

We will use the following proposal proved in [10].

Proposition 3.1. Let P(y)= Z by o B YB and P(y)_ Z bﬁ d! g be

Y
!
B[ pFa P
two polynomials of degree d defined respectively on triangles K = (A, B, C)
and K = (C, B, A) which share the common edge o ag = [A B]. Then the

C' continuity of P and P across oag issatisfied iff, for

O<k<r, and0<p<d K,
(22)

b(k,p,d k-p) = (d k—p,p, 0)(Y(C))

where t%((p.) are defined by

{bﬁ(m = by,

b (1) = nabl s, () + nabl e () + mabfoT () for k=1 (B =
with p = y(é) denotes the barycentrics coordinates of C over K and &

the ith vector of the canonical basis of RS,

Proposition 3.2. If the spline function Sis defined by S| k=R and its

coefficients are computed with equations (16), (18) and (19), then S e IP}C.

Proof. We have to prove that the spline Sis of class C! across each
interior edge of K.

Using Proposition 3.1 with p = (-1, 3, -1) for r =1and d = 3:
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Across the edge [Ay A, we get: Cok,p,3-k-p)=
CY@—k—p. p (-1 3 ~1).
If k =0, then

Cy(0,p,3-p)=C(3-p,p,0), 0<p<3

and hence
C,(0,0,3) = Cy(3, 0, 0),
02.0-00.2.0) @
C,(0, 3,0) = C(0, 3, 0).
If k =1, then
Colp,2-p)=-Ci(B-p, p, 0)+3CG(2-p,p+10)
-G(2-p,p, 1), 0<p<2
and hence
Cy(L, 0, 2) = ~C1(3, 0, 0) +3G;(2, 1, 0) - Cy(2, 0, 1),
C111)=-C(210)+3G(1 2 0)-C(1 1), (24)

Cy(1, 2, 0) = —C4(1, 2, 0) + 3C,(0, 3, 0) — C1(0, 2, 1).
Across the edge [Ap A], we get: C3(3-k-p,p k)=
C1'(0.p, 3~k ~p)(-L 3 1),
If k=0, then
C3(3-p,p, 0)=Cy(0,p,3-p), 0<p<3
and hence

C3(300) = C;(003),
C3(210) = C,(012),
C4(120) = C;(021),
C3(030) = C;(030).

(25
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If k=1, then
C3(2-p,p, ) =-CL p, 2-p)+3C(0, p+1 2-p)
-C(0,p,3-p), 0<p<2
hence

C3(201) = —C;(102) + 3C;(012) — C;(003),
Cs(111) = —Cy(111) + 3C;(021) — C,(012), (26)
C3(021) = —C;(120) + 3C1(030) — C;(021).

Across the edge [Ay Al, we get Cik,p,3-k-p)=
C5(3~k—p.p, 0)(-L 3 D).
If k=0, then

C3(0,p,3-p)=Co(3-p,p,0), 0<p<3

hence
C3(0, 0, 3) = C5(3, 0, 0),
C3(0,1,2)=C3(2,10), @
C3(0, 2,1) = Cx(4, 2, 0),
C3(0, 3, 0) = Cy(0, 3, 0).

If k=1, then

C3(l p, 2-p) = -Co(8-p, p, 0)+3Cx(2-p, p+1,0)
-C(2-p,p,1), 0<p<?2
hence

Ca(L 0, 2) = —Cy(3, 0, 0) + 3Cx(2, 1, 0) — Cx(2, 0, 1),
C3(L 1.1) = ~Cy(2.1, 0) + 3C,(1, 2, 0) - Cp(L 1, 1), (29)
Ca(L, 2, 0) = —Cy(1, 2, 0) + 3C,(0, 3, 0) — C»(0, 2, 1).

Relations (23), (24), (25), (26), (27) and (28) are checked easily starting from
relations (16), (18) and (19).
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4, Conclusion

This paper gives anew approach for constructing a piecewise polynomial

finite element of class C of Clough-Tocher type. It can be considered as

another proof that the HCT element is of class ct and gives a method to
construct the spline derived from this element. The process can be extended

to finite element of class C", r > 1. Thiswork is still in progress.
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