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Abstract 

In this paper, we show that the solutions to the nonlinear perturbed 
differential system 

( ) ( ) ( )( ) ( ) ( )( )∫ ++=′
t

t
tyTtythdssyTsysgytfy

0
21 ,,,,,  

have the bounded property by imposing conditions on the        

perturbed part ( ) ( )( ) ( ) ( )( )∫
t
t

tyTtythdssyTsysg
0

,,,,,, 21  and on the 

fundamental matrix of the unperturbed system ( )ytfy ,=′  using the 

notion of h-stability. 
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1. Introduction 

Pachpatte [15, 16] investigated the stability, boundedness, and the 
asymptotic behavior of the solutions of perturbed nonlinear systems under 
some suitable conditions on the perturbation term g and on the operator T. 
The purpose of this paper is to investigate bounds for solutions of the 
nonlinear differential systems further allowing more general perturbations 
that were previously allowed using the notion of h-stability. 

The notion of h-stability (hS) was introduced by Pinto [17, 18] with the 
intention of obtaining results about stability for a weakly stable system (at 
least, weaker than those given exponential asymptotic stability) under some 
perturbations. That is, Pinto extended the study of exponential asymptotic 
stability to a variety of reasonable systems called h-systems. Choi and Ryu 
[5] and Choi et al. [6] investigated bounds of solutions for nonlinear 
perturbed systems. Also, Goo [8-11] and Choi and Goo [3, 4] studied the 
boundedness of solutions for the perturbed differential systems. 

2. Preliminaries 

In this paper, we study bounds of solutions for a class of the nonlinear 
perturbed differential systems of the form 

( ) ( ) ( )( ) ( ) ( )( ) ( )∫ =++=′
t

t
ytytyTtythdssyTsysgytfy

0
,,,,,,, 0021  (2.1) 

where ( ),, nnCf RRR ×∈ +  ( ),,, nnnChg RRRR ××∈ +  ( ) ,00, =tf  

( ) ( ) nthtg R,00,0,0,0, ==  is the Euclidean n-space and ( ,:, 21
+RCTT  

) ( )nn C RRR ,+→  are a continuous operator. We consider nonlinear 

unperturbed differential systems of (2.1) 

( ) ( )( ) ( ) ,,, 00 xtxtxtftx ==′  (2.2) 

where ( ),, nnCf RRR ×∈ +  [ ).,0 ∞=+R  We assume that the Jacobian 

matrix xffx ∂∂=  exists and is continuous on nRR ×+  and ( ) .00, =tf  
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For ,nx R∈  let .
21

1
2 





= ∑ =

n
j jxx  For an nn ×  matrix A, define the 

norm A  of A by .sup 1 AxA x ≤=  

Let ( )00,, xttx  denote the unique solution of (2.2) with ( )000 ,, xttx  

,0x=  existing on [ ).,0 ∞t  Then we can consider the associated variational 

systems around the zero solution of (2.2) and around ( ),tx  respectively, 

( ) ( ) ( ) ( ) 00,0, vtvtvtftv x ==′  (2.3) 

and 

( ) ( )( ) ( ) ( ) .,,,, 0000 ztztzxttxtftz x ==′  (2.4) 

The fundamental matrix ( )00,, xttΦ  of (2.4) is given by 

( ) ( ),,,,, 00
0

00 xttxxxtt
∂
∂=Φ  

and ( )0,, 0ttΦ  is the fundamental matrix of (2.3). 

We introduce some notions [18] and results to be used in this paper. 

Definition 2.1. The system (2.2) (the zero solution 0=x  of (2.2)) is 
called an h-system if there exist a constant ,1≥c  and a positive continuous 

function h on +R  such that 

( ) ( ) ( ) 1
00
−≤ ththxctx  

for 00 ≥≥ tt  and 0x  small enough ( ) ( ) .1 here 1 




 =−

thth  

Definition 2.2. The system (2.2) (the zero solution 0=x  of (2.2)) is 
called (hS) h-stable if there exists 0>δ  such that (2.2) is an h-system for 

δ≤0x  and h is bounded. 

Let M  denote the set of all nn ×  continuous matrices ( )tA  defined       

on +R  and N  be the subset of M  consisting of those nonsingular matrices 
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( )tS  that are of class 1C  with the property that ( )tS  and ( )tS 1−  are 

bounded. The notion of ∞t -similarity in M  was introduced by Conti [7]. 

Definition 2.3. A matrix ( ) M∈tA  is ∞t -similar to a matrix ( ) M∈tB  

if there exists an nn ×  matrix ( )tF  absolutely integrable over ,+R  i.e., 

( )∫
∞

∞<
0

dttF  

such that 

( ) ( ) ( ) ( ) ( ) ( )tFtStAtBtStS =−+  (2.5) 

for some ( ) .N∈tS  

The notion of ∞t -similarity is an equivalence relation in the set of all 

nn ×  continuous matrices on ,+R  and it preserves some stability concepts 

[7, 13]. 

We give some related properties that we need in the sequel. 

Lemma 2.4 [18]. The linear system 

( ) ( ) ,, 00 xtxxtAx ==′  (2.6) 

where ( )tA  is an nn ×  continuous matrix, is an h-system (respectively,        

h-stable) if and only if there exist 1≥c  and a positive and continuous 

(respectively, bounded) function h defined on +R  such that 

( ) ( ) ( ) 1
00, −≤φ thtchtt  (2.7) 

for ,00 ≥≥ tt  where ( )0, ttφ  is a fundamental matrix of (2.6). 

We need Alekseev formula to compare between the solutions of (2.2) 
and the solutions of perturbed nonlinear system 

( ) ( ) ( ) ,,,, 00 ytyytgytfy =+=′  (2.8) 
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where ( )nnCg RRR ,×∈ +  and ( ) .00, =tg  Let ( ) ( )00,, yttyty =  denote 

the solution of (2.8) passing through the point ( )00, yt  in .nRR ×+  

The following is a generalization to nonlinear system of the variation of 
constants formula due to Alekseev [1]. 

Lemma 2.5 [2]. Let x and y be solutions of (2.2) and (2.8), respectively. 

If ,0
ny R∈  then for all 0tt ≥  such that ( ) ( ) ,,,,,, 0000

nn yttyyttx RR ∈∈  

( ) ( ) ( )( ) ( )( )∫ Φ+=
t

t
dssysgsystyttxytty

0
.,,,,,,, 0000  

Theorem 2.6 [5]. If the zero solution of (2.2) is hS, then the zero solution 
of (2.3) is hS. 

Theorem 2.7 [6]. Suppose that ( )0,tfx  is ∞t -similar to ( ( ,, txtfx  

))00, xt  for 00 ≥≥ tt  and δ≤0x  for some constant .0>δ  If the 

solution 0=v  of (2.3) is hS, then the solution 0=z  of (2.4) is hS. 

Lemma 2.8 (Bihari-type inequality). Let ( ) ( )( )∞∈∈λ + ,0,, CwCu R  

and ( )uw  be nondecreasing in u. Suppose that, for some ,0>c  

( ) ( ) ( )( )∫ ≥≥λ+≤
t

t
ttdssuwsctu

0
.0, 0  

Then 

( ) ( ) ( ) ,, 10
1

0
bttdsscWWtu

t

t
<≤



 λ+≤ ∫−  

where ( ) ( ) ( )∫ −=
u
u

uWsw
dsuW

0

1,  is the inverse of ( )uW  and 

( ) ( ) . :sup
0

1
01







 ∈λ+≥= ∫ −t

t
WdomdsscWttb  

Lemma 2.9 [3]. Let ( ) ( )( )∞∈∈λλλλλλ + ,0,,,,,,, 654321 wCu R  

and ( )uw  be nondecreasing in ( )., uwuu ≤  Suppose that for some ,0>c  
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( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )∫ ∫ ∫ ∫ τττλλ+λ+λ+≤
t

t

t

t

t

t

s

t
dsdusdssuwsdssusctu

0 0 0 0
4321  

( ) ( ) ( )( )∫ ∫ ≤≤τττλλ+
t

t

s

t
ttdsduws

0 0
.0, 065  

Then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,
0 0 0

654321
1

















ττλλ+ττλλ+λ+λ+≤ ∫ ∫ ∫−

t

t

s

t

s

t
dsdsdssscWWtu  

where 1
10 ,, −<≤ WWbtt  are the same functions as in Lemma 2.8, and 

( ) ( ) ( ) ( ) ( )






 ττλλ+λ+λ+≥= ∫ ∫

t

t

s

t
dssscWttb

0 0
432101 :sup  

( ) ( ) .1
65

0 

∈


ττλλ+ −∫ domWdsds

s

t
 

3. Main Results 

In this section, we investigate boundedness for solutions of the nonlinear 
perturbed differential systems via ∞t -similarity. 

We need the lemma to prove the following theorem. 

Lemma 3.1. Let ( ),,,,,,,,,,, 10987654321
+∈λλλλλλλλλλ RCu  

( )( ),,0 ∞∈ Cw  and ( )uw  be nondecreasing in ( )., uwuu ≤  Suppose that 

for some 0>c  and ,0 0 tt ≤≤  

( ) ( ) ( )( ) ( )∫ ∫ λ+λ+≤
t

t

t

t
sdssuwsctu

0 0
21  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )∫ ∫



λτλ+ττλ+ττλ⋅

τs

t t
drruruwu

0 0
6543  

( ) ( ) ( )( ) dsddrruwr
t

τ

λτλ+ ∫

τ

0
87  
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( ) ( ) ( )( )∫ ∫ τττλλ+
t

t

s

t
dsduws

0 0
.109  (3.1) 

Then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )








 λτλ+τλ+τλλ+λ+≤ ∫ ∫ ∫

τ− t

t

s

t t
drrsscWWtu

0 0 0
654321

1  

( ) ( ) ( ) ( ) ,
00

10987 




ττλλ+τ


λτλ+ ∫∫

τ
dsdsddrr

s

tt
 (3.2) 

where 1
10 ,, −<≤ WWbtt  are the same functions as in Lemma 2.8, and 

( ) ( ) ( ) ( ) ( ) ( ) ( )










 λτλ+τλ+τλλ+λ+≥= ∫ ∫ ∫

τt

t

s

t t
drrsscWttb

0 0 0
65432101 :sup  

( ) ( ) ( ) ( ) .1
10987

00 

∈


ττλλ+τ


λτλ+ −τ

∫∫ domWdsdsddrr
s

tt
 

Proof. Define a function ( )tv  by the right member of (3.1) and let us 

differentiate ( ).tv  Then we have 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )∫ ∫

 τττλλ+λ+λλ+λ=′

t

t

s

t
dussuwssusttuwttv

0 0
654321  

( ) ( ) ( )( ) ( ) ( ) ( )( )∫∫ λλ+

τττλλ+

t

t

s

t
dssuwstdsduws

00
.10987  

This reduces to 

( ) ( ) ( ) ( ) ( ) ( ) ( )




 ττλλ+λ+λλ+λ≤′ ∫ ∫

t

t

s

t
dssstttv

0 0
654321  

( ) ( ) ( ) ( ) ( )( ),
00

10987 tvwdsstdsds
t

t

s

t 
λλ+


ττλλ+ ∫∫  

,0tt ≥  since ( )tv  is nondecreasing, ( ),uwu ≤  and ( ) ( ).tvtu ≤  Now, by 

integrating the above inequality on [ ]tt ,0  and using ( ) ,0 ctv =  we obtain 
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( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫





 λτλ+τλ+τλλ+λ+≤

τt

t

s

t t
drrssctv

0 0 0
654321  

( ) ( ) ( ) ( ) ( )( ) .
00

10987 dssvwdsddrr
s

tt


ττλλ+τ


λτλ+ ∫∫

τ
 (3.3) 

It follows from Lemma 2.8 that (3.3) yields the estimate (3.2). ~ 

To obtain the bounded property, the following assumptions are needed: 

(H1) ( )0,tfx  is ∞t -similar to ( )( )00,,, xttxtfx  for 00 ≥≥ tt  and 

δ≤0x  for some constant .0>δ  

(H2) The solution 0=x  of (2.2) is hS with the increasing function h. 

(H3) ( )uw  is nondecreasing in u such that ( )uwu ≤  and ( ) ≤uwv
1  








v
uw  for some .0>v  

Theorem 3.2. Let ( ).,,,,,, +∈ RCqpkdcba  Suppose that (H1), (H2), 

(H3), and g in (2.1) satisfies 

( ) ( ) ( ) ( ) ( )( ) ( ) ,,, 11 tyTtywtbtytayTytg ++≤  (3.4) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫+≤
t

t

t

t
dssywsptcdssysktbtyT

0 0
,1  (3.5) 

and 

( ) ( )( ) ( ) ( )( ) ( )( ),,, 22 tyTtywtdtyTtyth +≤  

( ) ( ) ( )( )∫≤
t

t
dssywsqtyT

0
,2  (3.6) 

where ( ),,,,,,,, 1 +∈ RLwqpkdcba  ( )( ),,0 ∞∈Cw  21, TT  are continuous 

operators. Then any solution ( ) ( )00,, yttyty =  of (2.1) is bounded on 

[ )∞,0t  and it satisfies 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )








 τ+τ+τ++≤ ∫ ∫ ∫

τ− t

t

s

t t
drrkbbasdccWWthty

0 0 0
2

1  

( ) ( ) ( ) ( ) ,
00






ττ+τ


τ+ ∫∫

τ
dsdqsdddrrpc

s

tt
 

where W, 1−W  are the same functions as in Lemma 2.8, and 

( ) ( ) ( ) ( ) ( ) ( )










 τ+τ+τ++≥= ∫ ∫ ∫

τt

t

s

t t
drrkbbasdccWttb

0 0 0
201 :sup  

( ) ( ) ( ) ( ) .1

00 

∈


ττ+τ


τ+ −τ

∫∫ domWdsdqsdddrrpc
s

tt
 

Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(2.2) and (2.1), respectively. In view of assumption (H2), Theorem 2.6 
implies that the solution 0=v  of (2.3) is hS. Therefore, from (H1), by 
Theorem 2.7, the solution 0=z  of (2.4) is hS. Applying the nonlinear 
variation of constants formula due to Lemma 2.5, together with (3.4), (3.5) 
and (3.6), we have 

( ) ( )txty ≤  

( )( ) ( ) ( )( ) ( ) ( )( )∫ ∫ 





 +τττΦ+

t

t

s

t
dssyTsyshdsyTygsyst

0 0
21 ,,,,,,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫




 ττ+ττ+≤ −− t

t

s

t
ywbyashthcththyc

0 0

1
2

1
001  

( ) ( ) ( ) ( ) ( ) ( )( ) τ

τ+τ+ ∫ ∫

τ τ
ddrrywrpcdrryrkb

t t0 0
 

( ) ( )( ) ( ) ( )( ) .
0

dsdywqsywsd
s

t









 τττ++ ∫  

The assumptions (H2) and (H3) yield 

( ) ( ) ( ) ( ) ( ) ( )
( )∫ 










+≤ − t

t sh
sywsdthcththycty

0
2

1
001  
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( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( )∫ ∫


 τ+








τ
τ

τ+
τ
τ

τ+
τs

t t
drrh

ryrkbh
ywbh

ya
0 0

 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) .
00

dsdh
ywqsdddrrh

rywrpc
s

tt


τ








τ
τ

τ+τ









τ+ ∫∫

τ
 

Let ( ) ( ) ( ) .1−= thtytu  Then, in view of Lemma 3.1, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )








 τ+τ+τ++≤ ∫ ∫ ∫

τ− t

t

s

t t
drrkbbasdccWWthty

0 0 0
2

1  

( ) ( ) ( ) ( ) ,
00






ττ+τ


τ+ ∫∫

τ
dsdqsdddrrpc

s

tt
 

where ( ) .1
001
−= thycc  The above estimation yields the desired result, 

since the function h is bounded, and so the proof is complete. ~ 

Remark 3.3. Letting ( ) ( ) 0== tdtc  in Theorem 3.2, we obtain the 

same result as that of Theorem 3.1 in [9]. 

Theorem 3.4. Let ( ).,,,,, +∈ RCqkdcba  Suppose that (H1), (H2), 

(H3), and g in (2.1) satisfies 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ,,, 11
0

tyTtywtbtytadssyTsysg
t

t
++≤∫  

( ) ( ) ( ) ( )∫≤
t

t
dssysktbtyT

0
1  (3.7) 

and 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ,,, 22
0

tyTdssywsqtctyTtyth
t

t
+≤ ∫  

( ) ( ) ( )( ),2 tywtdtyT ≤  (3.8) 

where ( ),,,,,,, 1 +∈ RLwqkdcba  ( )( ),,0 ∞∈ Cw  21, TT  are continuous 

operators. Then any solution ( ) ( )00,, yttyty =  of (2.1) is bounded on 
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[ )∞,0t  and it satisfies 

( ) ( ) 1−≤ Wthty  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,
0 0 0

2 











 ττ+ττ++++⋅ ∫ ∫ ∫

t

t

s

t

s

t
dsdqscdksbsdsbsaccW  

where 1
10 ,, −<≤ WWbtt  are the same functions as in Lemma 2.8, and 

( ) ( ) ( ) ( ) ( ) ( )






 ττ++++≥= ∫ ∫

t

t

s

t
dksbsdsbsaccWttb

0 0
201 :sup  

( ) ( ) .1

0 

∈


ττ+ −∫ domWdsdqsc

s

t
 

Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(2.2) and (2.1), respectively. By the same argument as in the proof in 
Theorem 3.2, the solution 0=z  of (2.4) is hS. Using the nonlinear variation 
of constants formula due to Lemma 2.5, together with (3.7) and (3.8), we 
have 

( ) ( ) ( ) 1
001
−≤ ththycty  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )

 τ++++ ∫∫ − s

t

t

t
ksbsywsdsbsysashthc

00

1
2  

( ) ( ) ( ) ( )( ) .
0

dsdywqscdy
s

t


τττ+ττ⋅ ∫  

It follows from (H2) and (H3) that 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )

( )∫ 









+++≤ − t

t sh
sywsdsbsh

sysathcththycty
0

2
1

001  

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) .
00

dsdh
ywqscdh

yksb
s

t

s

t


τ








τ
τ

τ+τ
τ
τ

τ+ ∫∫  
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Set ( ) ( ) ( ) .1−= thtytu  Then, by Lemma 2.9, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )



 ττ++++≤ ∫ ∫− t

t

s

t
dksbsdsbsaccWWthty

0 0
2

1  

( ) ( ) ,
0





ττ+ ∫ dsdqsc

s

t
 

where ( ) ( ) .1
001
−= ththycc  Thus, any solution ( ) ( )00,, yttyty =  of (2.1) 

is bounded on [ ),,0 ∞t  and so the proof is complete. ~ 

Remark 3.5. Letting ( ) ( ) 0== tdtc  in Theorem 3.4, we obtain the 

same result as that of Theorem 3.3 in [9]. 

Lemma 3.6. Let ( ),,,,,,,,,, 987654321
+∈λλλλλλλλλ RCu ∈w  

( )( ),,0 ∞C  and ( )uw  be nondecreasing in ( )., uwuu ≤  Suppose that for 

some 0>c  and ,0 0 tt ≤≤  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫

 λτλ+ττλλ+λ+≤

τt

t

t

t

s

t t
drrurusdssusctu

0 0 0 0
54321  

( ) ( ) ( )( ) ( ) ( ) ( )( )∫ ∫∫ τττλλ+τ

λτλ+

τ t

t

s

tt
dsduwsdsddrruwr

0 00
.9876  

Then 

( ) ( ) ( ) ( ) ( ) ( ) ( )








 λτλ+τλλ+λ+≤ ∫ ∫ ∫

τ− t

t

s

t t
drrsscWWtu

0 0 0
54321

1  

( ) ( ) ( ) ( ) ,
00

9876 




ττλλ+τ


λτλ+ ∫∫

τ
dsdsddrr

s

tt
 

where 1
10 ,, −<≤ WWbtt  are the same functions as in Lemma 2.8, and 
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( ) ( ) ( ) ( ) ( ) ( )










 λτλ+τλλ+λ+≥= ∫ ∫ ∫

τt

t

s

t t
drrsscWttb

0 0 0
5432101 :sup  

( ) ( ) ( ) ( ) .1
9876

00 

∈


ττλλ+τ


λτλ+ −τ

∫∫ domWdsdsddrr
s

tt
 

Proof. By the same method as in the proof in Lemma 3.1, we can obtain 

the desired result. 
 

Theorem 3.7. Let ( ).,,,,,, +∈ RCqpkdcba  Suppose that (H1), 

(H2), (H3), and g in (2.1) satisfies 

( ) ( ) ( ) ( ) ,,, 11 tyTtytayTytg +≤  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )∫ ∫+≤
t

t

t

t
dssysptcdssywsktbtyT

0 0
1  (3.9) 

and 

( ) ( )( ) ( ) ( ) ( )( ),,, 22 tyTtytdtyTtyth +≤  

( ) ( ) ( )( )∫≤
t

t
dssywsqtyT

0
,2  (3.10) 

where ( ) ( )( ) 21
1 ,,,0,,,,,,,, TTCwLwqqkdcba ∞∈∈ +R  are continuous 

operators. Then any solution ( ) ( )00,, yttyty =  of (2.1) is bounded on 

[ )∞,0t  and it satisfies 

( ) ( ) ( ) ( ) ( ) ( ) ( )








 τ+τ++≤ ∫ ∫ ∫

τ− t

t

s

t t
drrkbasdccWWthty

0 0 0
2

1  

( ) ( ) ( ) ( ) ,
00






ττ+τ


τ+ ∫∫

τ
dsdqsdddrrpc

s

tt
 

where W, 1−W  are the same functions as in Lemma 2.8, and 
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( ) ( ) ( ) ( ) ( )










 τ+τ++≥= ∫ ∫ ∫

τt

t

s

t t
drrkbasdccWttb

0 0 0
201 :sup  

( ) ( ) ( ) ( ) .1

00 

∈


ττ+τ


τ+ −τ

∫∫ domWdsdqsdddrrpc
s

tt
 

Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(2.2) and (2.1), respectively. By the same argument as in the proof in 
Theorem 3.2, the solution 0=z  of (2.4) is hS. Applying the nonlinear 
variation of constants formula due to Lemma 2.5, together with (3.9) and 
(3.10), we have 

( ) ( ) ( ) 1
001
−≤ ththycty  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫ ∫





 τ+ττ+

τ−t

t

s

t t
drrywrkbyashthc

0 0 0

1
2  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) .
00

dsdywqsysdddrryrpc
s

tt









 τττ++τ


τ+ ∫∫

τ
 

By the assumptions (H2) and (H3), we obtain 

( ) ( ) ( ) ( ) ( ) ( )
( )∫ 


+≤ − t

t sh
sysdthcththycty

0
2

1
001  

( ) ( )
( ) ( ) ( ) ( )

( )∫ ∫









τ+

τ
τ

τ+
τs

t t
drrh

rywrkbh
ya

0 0
 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) .
00

dsdh
ywqsdddrrh

ryrpc
s

tt


τ








τ
τ

τ+τ

τ+ ∫∫

τ
 

Set ( ) ( ) ( ) .1−= thtytu  Then, by Lemma 3.6, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )








 τ+τ++≤ ∫ ∫ ∫

τ− t

t

s

t t
drrkbasdccWWthty

0 0 0
2

1  

( ) ( ) ( ) ( ) ,
00






ττ+τ


τ+ ∫∫

τ
dsdqsdddrrpc

s

tt
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where ( ) .1
001
−= thycc  The above estimation yields the desired result 

since the function h is bounded, and so the proof is complete. ~ 

Remark 3.8. Letting ( ) ( ) 0== tdtb  in Theorem 3.7, we obtain the 

similar result as that of Theorem 3.3 in [12]. 

Theorem 3.9. Let ( ).,,,,,, +∈ RCqpkdcba  Suppose that (H1), (H2), 

(H3), and g in (2.1) satisfies 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ,,, 11
0

tyTtywtbtytadssyTsysg
t

t
++≤∫  

( ) ( ) ( ) ( )( )∫≤
t

t
dssywsktctyT

0
1  (3.11) 

and 

( ) ( )( ) ( ) ( ) ( ) ( )∫ +≤
t

t
tyTdssysqtdtyTtyth

0
,,, 22  

( ) ( ) ( )( ),2 tywtptyT ≤  (3.12) 

where ( ),,,,,,,, 1 +∈ RLwqpkdcba  ( )( ),, ∞∈ Cw  21, TT  are continuous 

operators. Then any solution ( ) ( )00,, yttyty =  of (2.1) is bounded on 

[ )∞,0t  and it satisfies 

( ) ( ) 1−≤ Wthty  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,
0 0 0

2 











 ττ+ττ++++⋅ ∫ ∫ ∫

t

t

s

t

s

t
dsdqsddkscspsbsaccW  

where 1
10 ,, −<≤ WWbtt  are the same functions as in Lemma 2.8, and 

( ) ( ) ( ) ( ) ( ) ( )






 ττ++++≥= ∫ ∫

t

t

s

t
dkscspsbsaccWttb

0 0
201 :sup  

( ) ( ) .1

0 

∈


ττ+ −∫ domWdsdqsd

s

t
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Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(2.2) and (2.1), respectively. By the same argument as in the proof in 
Theorem 3.2, the solution 0=z  of (2.4) is hS. Using the nonlinear variation 
of constants formula due to Lemma 2.5, together with (3.11) and (3.12), we 
have 

( ) ( ) ( ) 1
001
−≤ ththycty  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( )∫ ∫

 τττ++++ −t

t

s

t
dywkscsywspsbsysashthc

0 0

1
2  

( ) ( ) ( ) .
0

dsdyqsd
s

t


τττ+ ∫  

It follows from (H2) and (H3) that 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )

( )∫ 









+++≤ − t

t sh
sywspsbsh

sysathcththycty
0

2
1

001  

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) .
0 0

dsdh
yqsddh

ywksc
s

t

s

t


τ

τ
τ

τ+τ







τ
τ

τ+ ∫ ∫  

Set ( ) ( ) ( ) .1−= thtytu  Then, by Lemma 2.9, we have 

( ) ( ) 1−≤ Wthty  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,
0 0 0

2 











 ττ+ττ++++⋅ ∫ ∫ ∫

t

t

s

t

s

t
dsdqsddkscspsbsaccW  

where ( ) ( ) .1
001
−= ththycc  Thus, any solution ( ) ( )00,, yttyty =  of (2.1) 

is bounded on [ ),,0 ∞t  and so the proof is complete. ~ 

Remark 3.10. Letting ( ) ( ) 0== tptd  in Theorem 3.9, we obtain the 

same result as that of Theorem 3.7 in [9]. 
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