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Abstract 

When a uniform stream on an open channel is disturbed by an existing 
bump at the bottom of the channel, the free boundary of the stream 
forms waves that grow, split and propagate, until a steady formation of 
a solitary-like wave is achieved. The model of that wave generation 
can be presented in Boussinesq equations, and its solution is              
able to simulate those processes. For linear model, the solution is a 
combination of three functions, each represents a wave with different 
amplitude and wave speed, depending on the strength of the incoming 
flow, presented as the Froude number. The solution is then used           
to verify a method of forward-time forward-space for a system           
of transport equations related to the Boussinesq equation. A good 
agreement can be obtained for supercritical flow. 
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1. Introduction 

A 2-D fluid stream is considered, flowing over a bump that is at the 
bottom of a channel. We assume that the fluid is inviscid and incompressible; 
and the flow is irrotational, so that the flow can be described in terms of 
potential function ϕ. The fluid flows from left to right, with uniform far 
upstream with velocity 0U  and depth H. The bump disturbs the flow, so that 

the fluid surface can be observed as waves growing and splitting, followed 
by propagating. The effect of the bump is to generate waves propagating 
upstream or downstream from the bump, depending on the strength of the 

uniform flow far upstream, expressed as the Froude number ,0 gHUF =  

where g is the acceleration due to gravity. 

Based on small ratio between the fluid depth and the wavelength, the 
governing equations of the fluid flow are formulated into an fKdV equation 
for steady case, and Boussinesq equations for unsteady are obtained by 
involving another small parameter. Wiryanto and Jamhuri [7] derived the 
fKdV equation, and solved the equation using a shooting method, by 
assuming the bottom topography and the surface profile are symmetric to the 
vertical axis. Two solutions with different crest heights are obtained for 
supercritical flow, that is, the horizontal velocity 0U  is greater than the wave 

speed .gH  This result is also presented by Chardard et al. [3], Camassa 
and Wu [1], and Camassa and Wu [2]. Wiryanto [4] then solved the fKdV 
equation using a finite difference method with non-homogeneous grids,          
and obtained similar result, that is, two solutions and the surface wave in  
solitary-like profile. Which solution is stable is the question that then was 
answered by Wiryanto and Mungkasi [8], who modeled the phenomena into 
Boussinesq-type equations. The numerical solution was obtained by solving 
the model using the third order Adams-Bashforth, similar method used by 
Wiryanto [5] for the model of interfacial wave. The numerical procedure is 
able to simulate the process of the wave generation. The surface elevation 
above the bump grows and splits into some waves propagating to the left or 
right direction. For long run, the surface profile tends to a steady solitary-like 
wave, similar to one of the results for fKdV model with small amplitude. 
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To analyze the process of the wave generation and to confirm the 
numerical solution, in this paper, we solve analytically the linear equations  
of the model. From the steady case of the Boussinesq equations, Wiryanto 
and Mungkasi [8] obtained the analytical solution, the surface elevation is 
proportional to the bump. This solution is then used to construct for the 
unsteady equations, Wiryanto and Mungkasi [9] derived the unsteady 
solution and compared it with the numerical solution based on predictor-
corrector method, used in Wiryanto and Mungkasi [8]. The numerical 
solution gives different wave speeds and amplitudes. We seek another 
numerical method to improve the solution. 

Since the model is a system of transport equations containing an external 
force related to the bottom topography, we propose to use the characteristic 
method. Wiryanto [6] used the same method for different models related to 
wave propagation over a porous breakwater without external force. As the 
result, the analytical solution can describe the phenomena. Basically, there 
are three waves generated by the flow. After splitting, each wave propagates 
with different wave speed and in different direction. These can be determined 
from the solution. 

2. Boussinesq Equations 

The Boussinesq equations are one model that can be seen in many 
physical phenomena, especially for wave propagation. These equations can 
also represent wave generation from uniform flow disturbed by a bump. The 
model that we are interested in is in the form of the surface elevation η and 
the average depth velocity u. The strength of the incoming uniform flow is 

presented in the Froude number ,0 gHUF =  and the bottom topography 

is ( ).xh  The model of the wave generation is Boussinesq-type equations 

given in non-dimensional and scaled variables as 
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The existence of a small parameter ε is related to non-linear terms. 
Physically, it is a ratio between the unity of the wave amplitude and the water 
depth. Wiryanto and Mungkasi [8] derived the model based on a series 
expansion of potential function. The variables η and u have initial condition 
( ) ,00, =η x  ( ) .00, =xu  They are defined as the perturbation from the 

situation at the uniform flow, which is in the order of ε. 

In case ,0=ε  the linear steady model can be obtained by taking .∞→t  
The model can be solved analytically, giving 

 ( ) ( ).
12

2
0 xh

F
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−

=η  (2) 

The profile of the surface is similar to the bottom topography for 
supercritical flow ,1>F  and for subcritical flow 1<F  but the surface has 
opposite amplitude to h. That profile is followed by the velocity of the fluid 
particle 
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We then call these solutions as the stationary ones. For finite t, η and u 
are added as the transient solution, discussed in the next section. 

3. Transient Solution 

We denote the transient solutions as 1η  and ,1u  so that 

( ) ( ) ( ) ( ) ( ) ( )txuxutxutxxtx ,,,,, 1010 +=η+η=η  

satisfy the linear equations of (1). When these η and u are substituted to (1), 
we obtain a set of transport equations without forcing term 
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The characteristic method can be applied to get the solution. Basically, 
we determine lines where the functions have the same value. For 
convenience, we write (4) in the matrix form 
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,xsAst =  

where 
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To solve the system of equations, we first transform the system into an 
uncoupled one, using pair of eigenvalues and eigenvectors of A, that is 

F−=λ 1  corresponding to ( )TFX 1−=  and F−−=λ 1  corresponding 

to ( ) ,1 TFX =  so that we have 
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This matrix is used to define a new vector ,yPs =  so that the system of 

equations becomes uncoupled ,xt yDy =  where D is a diagonal matrix 

containing the eigenvalues of A. 

If y  has elements 1y  and ,2y  the uncoupled equation has solutions 
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for arbitrary functions f and g, determined from the initial condition, 
described below. From the previous transformation, we inverse it to get 1η  

and ,1u  that is, 
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Now, we determine f and g from the initial conditions ( ) 00, =η x  and 

( ) ,00, =xu  also involving the stationary solutions (2) and (3), we have the 

initial conditions 



L. H. Wiryanto and Sudi Mungkasi 1722 

 ( ) ( ) ( ) ( ).
1

10,,
1

0, 212

2
1 xh

F
xuxh

F
Fx

−
=

−

−=η  (5) 

We then use this for 1η  and ,1u  which gives relations 
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These are then solved, giving 

( ) ( ) ( )( ) ( ) ( ) ( )( ),112
1,112

1 xFhFxgxFhFxf +
+

−=−
−

=  

we obtain the transient solutions 
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Here 1η  and 1u  are a linear combination of a function having different 

characteristic lines ( ) constant1 =−− tFx and ( ) constant.1 =+− tFx  

Along ( )tx,  on the line, the function has the same value. Therefore, 1η  is 

combination between two waves of form h, where each travels with wave 
speeds 1−= Fc  and .1+= Fc  For supercritical flow ,1>F  both waves 
travel to the right. This is different from subcritical flow ,10 << F  where 
one of the waves propagates to the left. Wiryanto and Mungkasi [8] also 
simulated both cases from the numerical solution. 

4. Characteristic Method 

In solving (4), we first discretize the space x by defining small value ,xΔ  
so that the observation domain is divided into J sub-intervals with end points 

,xjx j Δ=  for ....,,1,0 Jj =  Similarly for t, we define ( )Fxt +Δ=Δ 1  

following one of the characteristic line. Therefore, the equation xt yDy =  is 

discretized by finite difference forward-time forward-space, giving 
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for ....,,2,1 Jj =  We use notation ( ),, nji
n
ij txyy ≈  for .2,1=i  That 

finite difference is stable unconditionally for supercritical flow .1>F  The 
von Neumann method can be used for the analysis of the stability. 

When we obtain ,1+n
ijy  the values of 1η  and 1u  can be evaluated from 

,yPs =  and then we calculate for ., 1
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As the initial value, we use (5). It is transformed into 0
2

0
1 , jj yy  by =y  

.1sP−  For each time step, (6) needs the values at .1−j  For ,0=j  a 

boundary value is required. We provide by assuming at that position 

relatively far from the disturbance, so that we can give .00 =n
iy  

The numerical procedure described above can be used to evaluate the 
solution of (1). The result can be compared to the analytical solution. We 
simulate the numerical solution as shown in Figure 1, the stream of 6.1=F  
flowing over a bottom topography 

( )
( )
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201.01

1.0
2−+

=
x

xh  

producing surface waves. For some different times, the surfaces are      
plotted together in the same coordinate, by shifting upwards. Our numerical 
calculation is shown in Figure 1(a), and the analytical solution is shown         
in Figure 1(b). Both plots seem similar. Three waves are generated by 
disturbance of the flow, each propagates with different amplitude and wave 
speed. But, if we look closely, then we can see the difference between the 
numerical and analytical solutions. To do so, we plot the surface η at 

9.26=t  together between the analytical solution (dash curve) and the 
numerical one (smooth curve) in Figure 2(a). We choose ,69.2=t  as at that 
time we can observe the three waves in the flow domain. Both curves are 
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relatively the same, except at the second wave (in the middle) where we can 
see that the numerical solution has smaller amplitude than the analytical one, 
even though they have relatively the same wave speed. We also compare our 
computation with a result computed by another method that has been used by 
Wiryanto and Mungkasi [8], that is, the predictor-corrector Adams-Bashforth. 
We show also in Figure 1(a). The method is able to produce three waves, one 
stays above the bump and two split and propagate to the right with different 
wave speeds. The leading wave propagates with smaller wave speed than the 
same wave from the analytical and our numerical solution. Meanwhile, the 
predictor-corrector method produces the middle wave propagating with large 
wave speed, and smaller amplitude, compared to the analytical solution. 

For different bottom topography, we obtain a similar result. In Figure 
2(b), we show the plot of ( )69.2,xη  from analytical and characteristic 

numerical results as well as from the predictor-corrector method. In these 
results, we use the bottom topography 

( ) ( )[ ]203.0sech1.0 2 −= xxh  

disturbing the stream of .6.1=F  The effect of this disturbance generates 
three waves that split each other and propagate with different wave speeds. 

 
(a)                           (b) 

Figure 1. Plot of ( )tx,η  as the result of bottom topography ( ) =xh  

( )
,

201.01
1.0

2−+ x
 disturbing the stream of .6.1=F  Here (a) result from the 

analytical solution (b) result from the characteristic method. 
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(a)                                                               (b) 

Figure 2. Comparison between the analytical solution (dash curve (--)) and 
two numerical solutions (characteristic numerical solution coinciding the 
analytical one and predictor-corrector numerical solution not well-matching 
the analytical one) for ( ).69.2,xη  Here we use the same Froude number 

6.1=F  with the bottom topography (a) ( )
( )

,
201.01

1.0
2−+

=
x

xh  and (b) 

( ) ( )[ ].203.0sech1.0 2 −= xxh  

5. Conclusion 

We have solved the linear model of wave generation, based on 
Boussinesq equations. The analytical solution is a linear combination of three 
functions, which related with the bottom topography. The characters of each 
wave, amplitude and wave speed, are represented in those functions. This 
analytical solution is then used to confirm the numerical solution calculated 
by the characteristic method, which is found in a good agreement for 
supercritical flow, whereas the predictor-corrector method gives less accurate 
results for both the amplitude and wave speed. 
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