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Abstract 

In this paper, a ratio-dependent predator-prey model with both            
self-diffusion and cross-diffusion is investigated. We consider the 
effects of cross-diffusion on pattern formation and obtain the 
conditions for cross-diffusion-driven instability. Our results show that 
under certain hypotheses, the positive cross-diffusion can trigger 
Turing patterns even though the corresponding model without cross-
diffusion fails. Finally, the numerical simulations are carried out to 
provide a better understanding of the results. 

1. Introduction 

The formation and development of pattern and shape in biology is an 
interesting phenomenon known as morphogenesis. The most widely studied 
model for spatial pattern formation is the reaction-diffusion model that was 
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proposed by Turing in 1952 [14], who showed that a system of reacting and 
diffusing chemicals could evolve from initial near-homogeneity into a spatial 
pattern of chemical concentration. Then the interest in the diffusion-driven 
instability has long expanded from chemical system to biological system [2]. 
On the other hand, ecological systems are characterized by the interaction 
between species and their natural environment. An important type of 
interaction that affects population dynamics of all species is predation. Thus, 
spatial predator-prey models have been in the focus of ecological science, 
since the early days of this discipline. A variety of theoretical approaches 
have been developed and considerable progress has been made during the 
last three decades, we refer to [1, 3, 4, 10, 11, 15, 17]. 

Recently, many authors considered the following ratio-dependent 
predator-prey system [8]: 
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where α, β, γ, μ, m and K are all positive constants. 2222 yx ∂∂+∂∂=Δ  

denotes the usual Laplacian operator in space domain ,2R∈Ω  Ω  is 

bounded and connected. η  is the outward unit normal vector on .Ω∂  

( ),,, tyxN  ( )tyxP ,,  represent the population density of prey and predator 

at ( )yx,  and at time t, respectively. The prey grows with intrinsic growth 

rate γ  and carrying capacity K in the absence of predation. The constant μ  

is the death rate of predator, α is the capture rate. αβ  presents the 

conversion efficiency. m is the half-saturation constant. Diffusion terms 1d  
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and 2d  are the self-diffusion coefficients for N and P, respectively. The 

homogeneous Neumann boundary condition means that model (1) is self-
contained and has no population flux across the boundary .Ω∂  

However, in population dynamics, one of the observed features is that 
different concentration levels of the prey direct the movements of the 
predator and vice versa. In other words, the movement of a predator at any 
particular location is influenced by the gradient of the concentration of the 
prey at that location, and the movement of the prey is affected by the gradient 
of the concentration of the predator at the same location. For such reason, we 
will investigate the following model with cross-diffusion: 
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The constant 32dd  could be referred to as cross-diffusion pressure, which 

describes a mutual interference between individuals. The system (2) means 
that, in addition to the dispersive force, the diffusion of P also depends on 
population pressure from N. We rewrite 

( ) ( )( )NPdPNddivdPNdd ∇+∇+−=+Δ− 33232 11  

and regard ( ) NPddPNdd ∇−∇+− 3232 1  as the flux of the predator P. If 

,03 >d  the term Pdd 32−  of the flux of the predator is directed toward the 

decreasing population density of N. More details about the cross-diffusion 
can be found in [5-7, 9, 12, 13, 16]. 

The main aim of this paper is to study the effects of cross-diffusion                  
in system (2) by using mathematical analysis and numerical simulations.           
The paper is organized as follows. In Section 2, we derive the conditions          
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on the parameter values for cross-diffusion-driven instability and give the 
mathematical expression for the Hopf bifurcations and Turing bifurcation 
critical line. On the basis of these conditions, we locate the Turing 
bifurcation domain within the parameter space. In Section 3, by performing a 
series of simulations, we illustrate the emergence of different patterns. In the 
last section, some conclusions and discussions are given. 

2. Mathematical Analysis 

In order to minimize the number of parameters involved in the model, we 
can choose the scaling ,,, ttKmPvKNu γ→→→  then the model (2) 

can take the non-dimensionalized form as following: 
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where 

.,,,,, 3
21 Kddddddcbma vu =
γ

=
γ

=
γ
β=

γ
μ=

γ
α=  

Simple calculations show that the system (3) has two equilibrium points: 

 (i) the semi-trivial equilibrium point ( )0,11 =E  corresponding to 

extinction of the predator or prey only; 

(ii) the non-trivial equilibrium point ( )∗∗∗ = vuE ,  corresponding to 

coexistence of prey and predator, where 

∗∗∗ =−= ub
evc

aecu ,  

with .2bbce −=  
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It is easy to obtain that the condition for ensuring that ∗u  and ∗v  are 
positive is that 

 .0
2bbc

ba
−

<<  (4) 

From the biological point of view, we are interested in studying the 

stability behavior of the interior equilibrium point .∗E  By direct calculations, 

we can obtain the Jacobian corresponding to the equilibrium point ∗E  is 
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In order to linearize the reaction-diffusion equations (3) around the spatially 

homogeneous fixed point ( ),, ∗∗ vu  we consider a perturbation 

( ) ( ),,ˆ, tuutu rr += ∗  

( ) ( ),,ˆ, tvvtv rr += ∗  (5) 

where ( ) ,,ˆ ∗<< utu r  ( ) ∗<< vtv ,ˆ r  and ( )., yx=r  Taking 0, 21 >ωω  

and setting 

( ) ( ) ( ),expexp,ˆ 1 rkr ⋅λω= ittu  

( ) ( ) ( ),expexp,ˆ 2 rkr ⋅λω= ittv  (6) 

where ,2k=⋅ kk  k and λ  are wave-number and frequency, respectively. 
Then we obtain the characteristic equation 

,02 =−+λ JDI k  (7) 

where I is the unit tensor and 
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It follows that ( )2kλ=λ  satisfies the dispersion relation 

( ) ( ) ,0222 =+λ+λ kBkA  (8) 

where 

( ) ( ( )) ( ),1 2211
22 aakduddkA vu +−++= ∗  

( ) ( ) ( ( ) ) 2
122211

42 11 kadvdadadudkduddkB vuvvu
∗∗∗ −++−+=  

.21122211 aaaa −+  (9) 

The roots of equation (8) can be obtained by the following form: 

( ) [ ( ) ( ( )) ( )].42
1 22222

2,1 kBkAkAk −±−=λ  

For diffusion-driven instability to occur, one of the roots of (8) must have 

( ) 02 >λ kRe  for some .02 >k  If 0=k  (corresponding to the case of no 

diffusion), then we require that the homogeneous steady state is stable, i.e., 

( ) ,02 <λ kRe  which is guaranteed provided that 

( ) ,02211 <+= aaTr J  (10) 

( ) .021122211 >−= aaaaDet J  (11) 

The condition (10) implies that ( ) 02 >kA  for all .02 >k  Therefore, 

( ) 02 >kRe  only when ( ) 02 <kB  for some .02 >k  The equation for 

( )2kB  is quadratic in terms of ,2k  so it is easy to show that ( ) 02 <kB  (for 

some )02 >k  if and only if 

( ) ,01 122211 >−++ ∗∗ advdadadud vuv  

and 

[ ( ) ] ( ) ( ).141 21122211
2

122211 aaaaduddadvdadadud vuvuv −+>−++ ∗∗∗  
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Therefore, for the model in this paper, the conditions for cross-diffusion 
driven instability can be summarized as 

,02211 <+ aa  (12) 

,021122211 >− aaaa  (13) 

 ( ) ,01 122211 >−++ ∗∗ advdadadud vuv  (14) 

( ( ) )21222111 advdadadud vuv
∗∗ −++  

( ) ( ) .014 21122211 >−+− ∗ aaaadudd vu  (15) 

The four inequalities in (12)-(15) define a domain in parameter space 
( ),,, dBA  known as the Turing space, wherein the uniform steady state 

( )∗∗ vu ,  is linearly unstable. Note that, if ,0=d  then these conditions are 

identical to those derived for the system without cross-diffusion. 

Now we will give the critical line of Hopf and Turing bifurcations in         
a spatial domain. According to the above analysis, we know that the onset           
of Hopf instability corresponds to the case, when a pair of imaginary 
eigenvalues crosses the real axis from the negative to the positive side. This 
situation occurs only when the diffusion vanishes. Mathematically speaking, 

the Hopf bifurcation occurs when ( ( )) ,0Im 2 ≠λ k  ( ( )) 02 =λ kRe  at .0=k  

Then we can obtain the critical value of the transition, the Hopf bifurcation 
parameter, i.e., a equal to 

( ) .2
22

be
bcbccaH

−+=  

The next task is to study the Turing bifurcation. As we know that the system 
(3) will be unstable if at least one of the roots of equation (8) is positive. By 

straightforward analysis, we find that ( )2kB  is a quadratic polynomial with 

respect to .2k  Its extremum is a minimum at some .2k  From (9), elementary 
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differentiation with respect to 2k  shows 
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By substituting 2
min

2 kk =  into equation (9), we have 

( ) ( ) [ ( ) 2211
4
min

2
min 11 adadudkduddkB uvvu ++−+= ∗∗  

] .21122211
2
min12 aaaakadvdv −+− ∗  (17) 

By setting ( ) ,02
min =kB  we can obtain the critical value of Turing bifurcation 

parameter, ,Td  equal to 

( baedcdabedddaebbcdcdbcdbcd vvuvuuuvT 28822 2222 −−++−=  

) ( ) ( cdaebbaedaebdaeccbddcddb uuvvuvu
23222 88288 −+−+−+−  

).8822 22322 cdbcdbbcaecbcae uu +−++−  (18) 

Note that the right side of equation (18) includes the parameter a. Thus, we 
can draw the bifurcation line in a-d plane. 

At the critical point, we have ( ) 02 =kB  when .ckk =  For fixed 

kinetics parameters, this defines a critical cross-diffusion coefficient cd  as 

the appropriate root of 

[ ( ) ] ( ) ( ) .0141 21122211
2

122211 =−+−−++ ∗∗∗ aaaaduddadvdadadud vuvuv  

 (19) 

Then critical wavenumber ck  is given by 
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which shows that the cross-diffusion has effect on the critical wavenumber. 
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In other words, the critical wavenumber of the cross-diffusion system is 
different from the system without cross-diffusion. Now, let us discuss the 
bifurcations represented by these formulas in the parameter space spanned by 
the parameters a and d which can be seen from Figure 1. 

 
Figure 1. Bifurcation diagram for system (3). We set the parameter values 

.1,1,13.1,7.0 ==== vu ddcb  The Turing space is marked by I, which 

is the area bounded by the Turing bifurcation line and Hopf bifurcation line. 

The whole class of spatial model is included in this parameter space.  
The upper part of the displayed parameter space (where it is marked            
by IV) corresponds to systems with homogeneous equilibria, which is 
unconditionally stable. If this region is left via a bifurcation (Turing or 
Hopf), then the qualitative behaviour of such equilibria changes. If an 
equilibrium is represented by a point in the part of the parameter space 
(where it is marked by I), then it can be destabilized by a homogeneous 
oscillation. In domain II, both Hopf and Turing instabilities occur. The 
equilibria that can be found in the area (where it is marked by III) are stable 
with respect to homogeneous perturbations but loose their stability with 
respect to perturbations of specific wavenumbers k. In this region, stationary 
inhomogeneous patterns can be observed. 
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3. Numerical Simulation 

In this section, we will perform numerical simulations by computer to 
illustrate the results obtained in previous section. We are interested in that 
how cross-diffusion has influence on the dynamics for fixed deterministic 
parameters. To this end, we fix the deterministic model parameters to the 
values ,3.2=a  ,7.0=b  ,13.1=c  ,1=ud  1=vd  and vary the cross- 

diffusion coefficient d. Notice that for the no cross-diffusion system, there is 
no Turing pattern [14]. The values of these parameters can ensure the 
conditions (12) and (13) hold. Thus, we need to check the conditions (14) 
and (15) by varying d. From Figure 2, we can see that Turing pattern can 
emerge when d is more than the value corresponding to the point .θ  

To solve differential equations by computers, one has to discretize the 
space and time of the problem. The continuous problem defined by the 
reaction-diffusion system in two-dimensional space is solved in a discrete 
domain with NM ×  lattice sites. The spacing between the lattice points is 
defined by the lattice constant .hΔ  In the discrete system, the Laplacian 
describing diffusion is calculated using finite differences. The time evolution 
is also discrete and can be solved by using the Euler method with time step 

.tΔ  We set ,1=Δh  01.0=Δt  and .200== NM  And it is checked that         

a further decrease of the step values does not lead to any significant 
modification of the results. 
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Figure 2. ( ) ( ( ) ++=−++= ∗∗∗

1121222111 1,1 adudLadvdadadudL vvuv  

) ( ) ( ).14 21122211
2

1222 aaaaduddadvdad vuvu −+−− ∗∗  The values of the 

other parameters are in the text. 

Figure 3 shows the evolution of the spatial pattern of prey population 
with small random perturbation of stationary solutions u and v of the 
spatially homogeneous system when the parameter values are in the domain 
of Turing space. As d increases, stripes only, coexistence of stripes and spots, 
and spots only pattern emerge successively. 

 

Figure 3. Spatial pattern of species u with system (3) for: (a) ,5=d              
(b) 10=d  and (c) .15=d  The other parameters are stated in the text. The 
step of the iteration for time is 100,000. 
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4. Conclusion and Discussion 

In this paper, pattern formation of a ratio-dependent predator-prey model 
with both self-diffusion and cross-diffusion in two-dimensional space is 
investigated. We obtain the conditions for cross-diffusion-driven instability. 
Based on both mathematical analysis and numerical simulations, the different 
spatial patterns including stripes, stripe-spots and spots patterns can be 
obtained. 

The influence of cross-diffusion on the pattern formation is revealed. 
More specifically, Turing pattern formation cannot occur for the equal self- 
diffusion coefficients. However, combining with cross-diffusion, we obtain 
Turing pattern as d increases. It means that cross-diffusion can violate the 
stability and trigger stable Turing patterns. 

Although more work is needed, in principle, it seems that cross-diffusion 
is able to generate many different kinds of spatiotemporal patterns. For such 
reason, we can predict that the interaction of self-diffusion and cross-
diffusion can be considered as an important mechanism for the appearance of 
complex spatiotemporal dynamics in predator-prey models. 
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