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Abstract 

We address an analytical scheduling model with subcontracting and 
delivery. Each job can be scheduled either on a single machine at a 
manufacturer or outsourced to a subcontractor. For a given set of jobs, 
the decisions we need to make include the selection of the subset of 
jobs to be outsourced and the schedule of all the jobs. The objective 
function in our scheduling model is to minimize the weighted sum of 
the number of tardy jobs and the total cost. We show our scheduling 
problem is binary NP-hard, and present a dynamic programming 
algorithm for it. 
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1. Introduction and Problem Description 

Subcontracting has received a lot of attention in manufacturing 
management research. When the demand level is beyond the in-house 
production capacity, the manufacturer may outsource some orders to 
available subcontractors so that all orders can be completed as early as 
possible. Many factors need to be taken into account in making 
subcontracting decisions, such as production cost, subcontracting cost, 
customer demand, delivery lead times, etc. There are a handful of existing 
papers that discuss subcontracting under machine scheduling models. For 
example, Bertrand and Sridharan [1] studied a make-to-order manufacturing 
environment where orders arrive over time randomly, and can either be 
processed in-house on a single machine or outsourced. The objective is to 
maximize the utilization of in-house capacity while minimizing tardiness in 
fulfilling orders. Qi [4] studied the production scheduling problem for a    
two-stage flow shop where there are options of subcontracting some 
operations to subcontractors. He considered a minimum makespan objective 
and analyzed various models for different situations of subcontracting. 

We address an analytical scheduling model for a firm with an option of 
subcontracting in this paper. We assume that there is a single machine at          
the manufacturer’s plant, and there is a subcontractor, who has a sufficient 
number of identical parallel machines, such that each of these machines will 
handle at most one job, possibly at a higher cost. Assuming that there is only 
one customer, who places n orders, i.e., there are n jobs to be processed. If 
job j is processed at the manufacturer’s plant, then a processing time ,0 jp          

a production cost jw0  and a delivery time js0  are required. If job j is 

outsourced, then a processing time ,1 jp  a subcontracting cost jw1  and a 

delivery time js1  are needed. Since there are plenty of vehicles at the 

processing places and each vehicle can transport one job at a time, each 
completed job can be transported directly from its processing place to the 
customer immediately. The delivery time of each job refers to the 
transportation time from its processing place to the customer. It is obvious 
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that each job has two transportation times, which are determined by job’s 
processing site. For convenience, the delivery time of job j is denoted by  

,jS  i.e., jj sS 0=  if job j is scheduled on in-house machine and otherwise 

.1 jj sS =  Given a schedule, we denote jC  and jd  as the completion time 

and the due date of job j, respectively. All jobs are available at the time zero, 
and preemption is not allowed. 

Let 1=jU  if jjj dSC >+  and 0=jU  if .jjj dSC ≤+  ∑ jU  

denotes the number of tardy jobs. The objective function in our model is      
to minimize the weighted sum of the number of tardy jobs and the total cost. 
Using the notation introduced by Graham et al. [3], we denote the general 

form of our problem as ( )∑ λ−+λ∞+ ,11 WU j  where “1” indicates           

the number of the available in-house machines, “∞” indicates that the 
subcontractor has unlimited capacity, ( ),1,0∈λ  and W denotes the whole 

sum of production cost and outsourcing cost. We can choose a weighting 

parameter ( ),1,0∈λ  assign λ as the preference weight to ∑ ,jU  assign 

( )λ−1  as the preference weight to W, and consider the weighted sum of 

these two measures. The key issue is then how to coordinate the in-house 
production and subcontracting in an efficient way. 

The rest of the paper is organized as follows. In Section 2, we give the 

complexity analysis for the first problem ( )∑ λ−+λ∞+ ,11 WU j  and 

present a dynamic programming algorithm for it. Finally, we summarize our 
results in Section 3. 

2. Problem ( )∑ λ−+λ∞+ WU j 11  

Now, we show that the problem ( )∑ λ−+λ∞+ WU j 11  is NP-hard. 

Theorem 2.1. The problem ( )∑ λ−+λ∞+ WU j 11  is binary NP-

hard. 



Jianfeng Ren 448 

Proof. The proof can be done in polynomial reduction from the                   
2-partition problem [2], which is known to be NP-hard. The 2-partition 
problem is stated as follows: 

2-partition. Given 1+n  integers Bbbb n ,...,,, 21  such that ∑ =n
j jb  

,2B  does there exist a subset { }nNQ ...,,2,1=⊆  such that ∑ ∈ =Qj j Bb ?  

We construct the instance of the problem ( )∑ λ−+λ∞+ WU j 11  as 

follows: 

• Number of jobs: .1+n  

• .22
12

+
+=λ B

B  

• ,2
1, 010 jjjj ppbp ==  for .,2,...,,2,1 1,11,0 BpBpnj nn === ++  

• ,2, 10 jjjj bwbw ==  for .0,4,...,,1 1,11,0 === ++ nn wBwnj  

• ;010 == jj ss  i.e., ;0=jS  for .1...,,2,1 += nj  

• ,Bd j =  for .1,...,,2,1 += nnj  

• Threshold value: .22
3
+B
B  

It can be observed that the above construction can be done in polynomial 
time. 

First, we assume that the partition problem has a solution =⊆ NQ  

{ }n...,,2,1  such that ∑ ∈ =Qj j Bb .  We construct a schedule by the 

following way: assign each job in { }QjJ j ∈:  to be scheduled on the          

in-house machine and outsourced all the other jobs. We use =maxC  
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{ }jjnnj SC ++= 1,...,,2,1max  to denote the common makespan. It is not hard 

to show that ,1...,,1,0,max +=== njUBC j  and .3BW =  Thus, 

( ) ( )∑ +
=λ−=λ−+λ .22

3311 B
BBWU j  

Now, we suppose that there is a schedule π which objective function 

value is at most ,22
3
+B
B  we will show that there exists a solution to the 

partition problem. 

In fact, the job 1+n  is outsourced. Otherwise, 

( ) ( )∑ +
>

+
=λ−≥λ−+λ + ,22

3
22

411 1,0 B
B

B
BwWU nj  

a contradiction. 

Let Q to be the set of jobs scheduled on the in-house machine, we will 

show that ∑ ∈ =Qj j Bb .  

If ∑ ∈ <Qj j Bb ,  then the completion time of the last job scheduled on 

the in-house machine is strictly less than B. According to the construction of 
the scheduling instance, it is easy to show that the job 1+n  is the last one 
completed on the outsourcing machine, i.e., 

∑
=

+
∈∈

==≤≤
n

j
njj

Nj
j

QNj
pBppp

1
1,1011

\
.2

1maxmax  

Thus, using the fact that 0=jS  for ,1,...,,2,1 += nnj  we have 

.max BC =  As ,Bd j =  we obtain .1,...,,1,0 +== nnjU j  

Since 

∑ ∑ ∑ ∑∈ ∈ ∈ ∈+ +=++=
Qj QNj Qj QNj jjnjj bbwwwW

\ \1,110 ,2  
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and ∑ ∈ >QNj j Bb\ ,  we have 

( ) ( )∑ ∑ ∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+λ−=λ−+λ

∈ ∈Qj QNj
jjj bbWU

\
211  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

+
= ∑ ∑

= ∈

n

j QNj
jj bbB

1 \
22

1  

( )BBBbBB
QNj

j +
+

>⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

+
= ∑

∈

222
1222

1

\
 

,22
3
+

= B
B  

a contradiction. If ∑ ∈ >Qj j Bb ,  then we will obtain ∑ +
= >1

1 .1n
j jU  By 

∑ ∑∈ ∈ =≤Qj Nj jj Bbb ,2  it follows that 

( )∑ λ−+λ WU j 1  

( ) ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+λ−+λ=λ−+λ> ∑ ∑

∈ ∈Qj QNj
jj bbW

\
211  

( ) ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−λ−+λ=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−λ−+λ= ∑∑ ∑

∈= ∈ Qj
j

n

j Qj
jj bBbb 4121

1
 

( ) ,22
3

22
142422

1
22
12

+
>

+
+=−

+
+

+
+≥ B

B
B
BBBBB

B  

a contradiction. This implies the existence of a solution to the partition 
problem. ~ 
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Next, we design a dynamic programming algorithm to solve problem 

( )∑ λ−+λ∞+ ,11 WU j  denoted as DP. Using the optimality of the 

problem ∑ ,1 jU  we get the following evident lemma: 

Lemma 2.1. For problem ( )∑ λ−+λ∞+ ,11 WU j  there exists an 

optimal solution in which all on-time jobs are scheduled in the EDD order 
(i.e., jobs are sequenced in the nondecreasing order of due times), and tardy 
jobs in-house are following the on-time jobs. 

Proof. It can be proved in interchange arguments. ~ 

Based on the EDD property, we assume that jobs are indexed as 
.21 nddd ≤≤≤  We define ( )mluj ,,,  as a state describing a sub-

schedule for jobs ,...,,2,1 j  where (1) u is the load of the in-house machine, 

i.e., the total processing times of those jobs scheduled on the in-house 
machine, (2) l is the number of on-time jobs in-house and (3) m is the 
number of on-time jobs outsourced. Let ( )mlujf ,,,  be the optimal value of 

the objective function for a sub-schedule described by ( ).,,, mluj  

If j is scheduled in-house, then we set 

( )mlujf ,,,0  

( ) ( )

( ) ( )⎪⎩

⎪
⎨
⎧

λ−+λ+−−

≤+λ−+−−−
=

.otherwise,1,;,1

;if,1,1,,1

00

000

jj

jjjj

wmlpujf

dsuwmlpujf
 

If j is outsourced, let 

( )
( ) ( )

( ) ( )⎪⎩

⎪
⎨
⎧

λ−+λ+−

≤+λ−+−−
=

.otherwise,1,,,1

;if,11,,,1
,,,

1

1111

j

jjjj

wmlujf

dspwmlujf
mlujf  

Furthermore 

( ) { ( ) ( )}.,,,,,,,min,,, 10 mlujfmlujfmlujf =  
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Next, we give the initial conditions as follows: 

( )

( )
( )

( )
( )
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∞+

===λ−

===λ−+λ

===λ−

===λ−+λ

=

.otherwise,
;1,0,0,1
;0,0,0,1

;0,1,,1
;0,0,,1

,,,1

01

11

0101

0101

mluw
mluw

mlpuw
mlpuw

mluf  

Then the optimal solution is given by ( ){ },,,,min ,, mlunfmlu  where =u  

;...,,2,1,0 P  ;...,,2,1,0 nl =  ,...,,2,1,0 nm =  and P stands for the       

sum of processing times for all jobs. The running time of the dynamic 

programming algorithm DP is ( ).2PnO  

3. Conclusion 

We have proposed an analytical scheduling model for the coordination  
of in-house production and outsourcing, whose objective function is to 
minimize the weighted sum of the number of tardy jobs and the total cost. In 
the further, we will investigate more complex models with multiple available 
subcontractors and batch processing. 
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