ON SIZE MULTIPARTITE RAMSEY NUMBERS FOR SMALL $K_{s \times t}$ VERSUS PATHS

Narwen, Effendi and Syafrizal Sy*
Department of Mathematics
Andalas University
Kampus Unand Limau Manis Padang 25163
Indonesia
e-mail: narwen68@gmail.com
effendi_sjarief@yahoo.com
syafrizalsy@gmail.com
syafrizalsy@fmipa.unand.ac.id

Abstract

For given two graphs G_{1} and G_{2}, and integer $s \geq 2$, the size Ramsey multipartite number $m_{s}\left(G_{1}, G_{2}\right)=t$ is the smallest integer such that every factorization of graph $K_{s \times t}:=F_{1} \oplus F_{2}$ satisfies the following condition: either F_{1} contains G_{1} as a subgraph or F_{2} contains G_{2} as a subgraph. In this paper, we determine that $m_{2}\left(K_{2 \times n}, P_{4 n}\right)$ for $n \geq 2$, and $m_{3}\left(K_{3 \times 2}, P_{n}\right)$ for $4 \leq n \leq 7$.

[^0]
1. Introduction

All graphs $G=(V, E)$ considered in this paper are finite graphs without loops and multiple edges. The order of the graph $G=(V, E)$ is denoted by $|V(G)|$ and the number of edges in the graph is denoted by $|E(G)|$. The graphs $K_{s, t}$ and $K_{s \times t}$ represent complete bipartite graph with partite sets of size s and t, and the complete multipartite graph consisting of s partite sets having exactly t vertices in each partite set, respectively.

The notion of size multipartite Ramsey numbers was introduced by Burger and van Vuuren [1] and Syafrizal et al. [5] by considering the two factorization of a $K_{s \times t}$ by fixing the size s of the uniform multipartite sets. More precisely, for given two graphs G_{1} and G_{2}, and integer $s \geq 2$, the size Ramsey multipartite number $m_{s}\left(G_{1}, G_{2}\right)=t$ is the smallest integer such that every factorization of graph $K_{s \times t}:=F_{1} \oplus F_{2}$ satisfies the following condition: either F_{1} contains G_{1} as a subgraph or F_{2} contains G_{2} as a subgraph. Ramsey numbers of small paths versus certain classes of graphs have been studied by Sy et al. in [6, 7, 9, 10] and [11]. Motivated by these findings, we have attempted in this paper to find size multipartite Ramsey numbers for small balanced complete multipartite graphs. Sy and Baskoro [8] have obtained the size multipartite Ramsey numbers for balanced complete multipartite graphs as follows.

Theorem 1. For integers $j, n \geq 3$ and $b \geq 2$,

$$
m_{j}\left(P_{n}, K_{j \times b}\right) \geq \begin{cases}(n-1) b, & \text { if } 3 \leq n \leq j \\ j b, & \text { if } j<n<j b \\ (j-1)\left\lfloor\frac{n-2}{2}\right\rfloor+b, & \text { if } n \geq j b\end{cases}
$$

Surahmat and Sy [4] have determined the stars-paths size bipartite Ramsey numbers $m_{2}\left(P_{4}, K_{1, n}\right)=n+1$ for $n \geq 3$. Furthermore, Sy [12]

On Size Multipartite Ramsey Numbers for Small $K_{s \times t}$ vs $P_{n} 1483$ determined the exact values of the size multipartite Ramsey numbers for trees versus paths as follows.

Theorem 2. For integers $n, s \geq 2$,

$$
m_{2}\left(P_{n}, T_{s}\right)= \begin{cases}\left\lceil\frac{n+1}{2}\right\rceil, & \text { for } n \geq 10, s=4, \\ \left\lceil\frac{n}{2}\right\rceil, & \text { for }(n \geq 3, s \leq 3) \text { or }\left(n \geq 9,4<s \leq\left\lceil\frac{n}{2}\right\rceil\right), \\ s, & \text { for }\left(\left\lceil\frac{n}{2}\right\rceil<s<n<2 s\right) \text { or }(s=n \text { is odd }), \\ s-1, & \text { for } s=n \text { is even, } \\ n+\left\lfloor\frac{n}{2}\right\rfloor-1, & \text { for } s=2 n, \\ \left\lceil\frac{s}{2}\right\rceil+\frac{n}{2}-1, & \text { for } n<s, n \text { is even, } \\ \left\lceil\frac{s}{2}\right\rceil+\left\lceil\frac{n}{2}\right\rceil-2, & \text { for } n<s, n \text { is odd. }\end{cases}
$$

Recently, Lusiani et al. [2] have obtained the size multipartite Ramsey numbers for a combination of stars and cycles $m_{j}\left(S_{m}, C_{n}\right)$, where $3 \leq n \leq j$ and any $m \geq 3$.

2. Main Results

The first main result of this paper is the determination of the size bipartite Ramsey numbers for combination small balanced complete multipartite graph and paths on $n \geq 2$ vertices.

Theorem 3. For integer $n \geq 2, m_{2}\left(P_{4 n}, K_{2 \times n}\right)=2 n+1$.
Proof. We show first that $m_{2}\left(P_{4 n}, K_{2 \times n}\right) \geq 2 n+1$. Consider any factorization $K_{2 \times 2 n}:=G_{1} \oplus G_{2}$, where $G_{1}:=K_{1, n-1} \cup K_{n-1,1}$. Clearly that $G_{1} \nsupseteq K_{2 \times n}$ and also $G_{2} \nsupseteq P_{4 n}$. Therefore, $m_{2}\left(P_{4 n}, K_{2 \times n}\right) \geq 2 n+1$ for all $n \geq 2$.

Now, we show that $m_{2}\left(P_{4 n}, K_{2 \times n}\right) \leq 2 n+1$. Let $F_{1} \oplus F_{2}$ be any factorization of $K_{2 \times(2 n+1)}$ such that $K_{2 \times n}$ is not a subgraph of F_{1}. We will show that $P_{4 n}$ is a subgraph of F_{2}. Thus, by Lemma 1 in [3], F_{2} possesses a Hamiltonian path, so $F_{2} \supseteq P_{4 n}$. Therefore, $m_{2}\left(P_{4 n}, K_{2 \times n}\right) \leq 2 n+1$ for all $n \geq 2$.

The second main result of this paper is determination of the size tripartite Ramsey numbers for combination small balanced complete multipartite graph and paths P_{n}, where $n=4,5,6$, or 7 .

Theorem 4. For positive integer $n, 4 \leq n \leq 7, m_{3}\left(P_{n}, K_{3 \times 2}\right)=6$.
Proof. For $3 \leq n \leq 5$ by Theorem 2 in [8], we have $m_{3}\left(P_{n}, K_{3 \times 2}\right)=6$.
Next, by Theorem 1 in [8], we have the lower bound $m_{3}\left(P_{n}, K_{3 \times 2}\right) \geq 6$ for $6 \leq n \leq 7$.

To show the upper bound $m_{3}\left(P_{n}, K_{3 \times 2}\right) \leq 6$, consider $F \cong K_{3 \times 6}$. Let $F_{1} \oplus F_{2}$ be any factorization of F so that F_{1} contains no P_{n}. We will show that F_{2} contains $K_{3 \times 2}$. Let P be a longest path in F, and Q be a longest path in graph $F \backslash V(P)$ and R be a longest path in graph $F \backslash V(P \cup Q)$. Let a and b be the end vertices of P. Let c and d be the end vertices of Q. Let e and f be the end vertices of R. Since P, Q, and R are the longest paths, $x y \notin E\left(F_{1}\right)$ for each $x, y \in\{a, b, c, d, e, f\}$. Let A, B, C be the partite sets of F. We consider two possibilities.

Case 1. If $a, b \in A, c, d \in B$, and $e, f \in C$, then $u v \notin E\left(F_{1}\right)$ for every $u, v \in\{a, b, c, d, e, f\}$. Thus, the set $\{a, b, c, d, e, f\}$ will induce a $K_{3 \times 2}$ in F_{2}. Therefore $m_{3}\left(K_{3 \times 2}, P_{n}\right) \leq 6$ for $6 \leq n \leq 7$.

Case 2. If $a, b \notin A, c, d \notin B$, or $e, f \notin C$. Without loss of generality, we may assume $a \in A$ and $b \in B, c \in B$ and $d \in C$, and $e \in C$ and $f \in C$. Clearly that $a c, a e, c e \notin F_{1}$. Since $|A|=|B|=|C|=6$, there are three

On Size Multipartite Ramsey Numbers for Small $K_{s \times t}$ vs $P_{n} 1485$
vertices, namely $u \in A, v \in B$, and $w \in C$ such that $u v, u w, v w \notin F_{1}$. Therefore, the set $\{a, u, c, v, e, w\}$ will induce a $K_{3 \times 2}$ in F_{2}. Thus, $m_{3}\left(P_{n}, K_{3 \times 2}\right) \leq 6$ for $6 \leq n \leq 7$.

Acknowledgments

The research was partially supported by Penelitian Fundamental Direktorat Jenderal Penguatan Riset dan Pengembangan Kemenristekdikti, Contract Number: 020/SP2H/LT/DRPM/II/2016.

The authors also thank the anonymous referees for their valuable suggestions which led to the improvement of the manuscript.

References

[1] A. P. Burger and J. H. van Vuuren, Ramsey numbers in complete balanced multipartite graphs Part II: size numbers, Discrete Math 283 (2004), 45-49.
[2] Anie Lusiani, Syafrizal Sy, Edy Tri Baskoro and Chula Jayawardene, On size multipartite Ramsey numbers for stars versus cycles, Procedia Computer Science 74 (2015), 27-31.
[3] J. H. Hattingh and M. A. Henning, Star-path bipartite Ramsey numbers, Discrete Math. 185 (1998), 255-258.
[4] Surahmat and Syafrizal Sy, Star-path size multipartite Ramsey numbers, Appl. Math. Sci. 8(75) (2014), 3733-3736.
[5] Syafrizal Sy, E. T. Baskoro and S. Uttunggadewa, The size multipartite Ramsey number for paths, J. Combin. Math. Combin. Comput. 55 (2005), 103-107.
[6] Syafrizal Sy, E. T. Baskoro and S. Uttunggadewa, The size multipartite Ramsey numbers for small paths versus other graphs, Far East J. Appl. Math. 28(1) (2007), 131-138.
[7] Syafrizal Sy, E. T. Baskoro, S. Uttunggadewa and H. Assiyatun, Path-path size multipartite Ramsey numbers, J. Combin. Math. Combin. Comput. 71 (2009), 265-271.
[8] Syafrizal Sy and E. T. Baskoro, Lower bounds for size multipartite Ramsey numbers $m_{j}\left(P_{n}, K_{j \times b}\right)$, Amer. Inst. Phys. Proc. 1450 (2011), 259-261.
[9] Syafrizal Sy, On size multipartite Ramsey numbers for paths versus cycles of three or four vertices, Far East J. Appl. Math. 44(2) (2010), 109-116.
[10] Syafrizal Sy, On the size multipartite Ramsey numbers for small path versus cocktail party graphs, Far East J. Appl. Math. 55(1) (2011), 53-60.
[11] Syafrizal Sy, The size multipartite Ramsey numbers of paths with respect to complete balanced multipartite graphs, Far East J. Appl. Math. 62(2) (2012), 107-115.
[12] Syafrizal Sy, Tree-path size bipartite Ramsey numbers, Far East J. Math. Sci. (FJMS) 76(1) (2013), 139-145.

[^0]: Received: July 16, 2016; Revised: August 1, 2016; Accepted: August 3, 2016
 2010 Mathematics Subject Classification: 05C55, 05D10.
 Keywords and phrases: balanced complete multipartite graphs, paths, size multipartite Ramsey number.
 *Corresponding author
 Communicated by K. K. Azad

