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Abstract

For given two graphs G; and G,, and integer s > 2, the size Ramsey
multipartite number mg(Gy, G,) =t is the smallest integer such that
every factorization of graph Ks,; = F @ F, satisfies the following
condition: either F; contains G; as a subgraph or F, contains G, as
a subgraph. In this paper, we determine that my (Ko, Ps,) for n>2,

and m3(Kzyo, P,) for 4 <n <7.

Received: July 16, 2016; Revised: August 1, 2016; Accepted: August 3, 2016

2010 Mathematics Subject Classification: 05C55, 05D10.

Keywords and phrases: balanced complete multipartite graphs, paths, size multipartite
Ramsey number.

*Corresponding author

Communicated by K. K. Azad



1482 Narwen, Effendi and Syafrizal Sy

1. Introduction

All graphs G = (V, E) considered in this paper are finite graphs without
loops and multiple edges. The order of the graph G = (V, E) is denoted by
|[V(G)| and the number of edges in the graph is denoted by |E(G)|. The
graphs K and K, represent complete bipartite graph with partite sets of

size s and t, and the complete multipartite graph consisting of s partite sets
having exactly t vertices in each partite set, respectively.

The notion of size multipartite Ramsey numbers was introduced by
Burger and van Vuuren [1] and Syafrizal et al. [5] by considering the two
factorization of a Kg,¢ by fixing the size s of the uniform multipartite sets.
More precisely, for given two graphs G; and G,, and integer s > 2, the size
Ramsey multipartite number mg(Gy, G,) =t is the smallest integer such that
every factorization of graph Kg,; := F, @ F, satisfies the following condition:
either F; contains G, as a subgraph or F, contains G, as a subgraph. Ramsey

numbers of small paths versus certain classes of graphs have been studied by
Sy et al. in [6, 7, 9, 10] and [11]. Motivated by these findings, we have
attempted in this paper to find size multipartite Ramsey numbers for small
balanced complete multipartite graphs. Sy and Baskoro [8] have obtained the
size multipartite Ramsey numbers for balanced complete multipartite graphs
as follows.

Theorem 1. For integers j,n >3 and b > 2,

(n=1)b, if 3<n<j,

m;j(Pn, Kjxp) > 1 ib, if j<n< jb,

(j—nL“;2J+u if n> jb.

Surahmat and Sy [4] have determined the stars-paths size bipartite
Ramsey numbers m,(P,, Ky ) =n+1 for n> 3. Furthermore, Sy [12]
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determined the exact values of the size multipartite Ramsey numbers for trees
versus paths as follows.

Theorem 2. For integers n, s > 2,

[n;w, for n > 10, s = 4,
n n
[ﬂ, for(n23,ssS)or(n29,4<ss(§D,
s, for U%_l <s<n< 25) or (s =nis odd),
mo(Py, Tg) =45 -1, for s = nis even,

n+{gJ—1, for s = 2n,

S n ;
[_—IJF_—L for n < s, nis even,

2 2
S n .
[E—l +[ﬂ -2, for n<s, nis odd.

Recently, Lusiani et al. [2] have obtained the size multipartite Ramsey
numbers for a combination of stars and cycles mj(Sm, Cn), Where 3<n< j

andany m > 3.
2. Main Results

The first main result of this paper is the determination of the size
bipartite Ramsey numbers for combination small balanced complete
multipartite graph and paths on n > 2 vertices.

Theorem 3. For integer n > 2, my(Pyp, Koyp) = 2n +1.

Proof. We show first that m,(Py,, Ko.y) = 2n+1. Consider any
factorization Ky,pn = G ® Gy, where Gy = Ky 3 U K3 1. Clearly that
Gy 2 Koy and also G, 2 Pyy,. Therefore, my(Pypn, Koypn) = 2n+1 for all

n= 2.
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Now, we show that my(Psn, Koxn)<2n+1. Let F @ F, be any

factorization of Ky, (2n41) such that Ky, is not a subgraph of F. We will

show that Py, is a subgraph of F,. Thus, by Lemma 1 in [3], F, possesses
a Hamiltonian path, so F, o Py,. Therefore, my(Psp, Koyn) < 2n+1 for
all n > 2, O

The second main result of this paper is determination of the size tripartite

Ramsey numbers for combination small balanced complete multipartite
graph and paths P,, where n = 4, 5, 6, or 7.

Theorem 4. For positive integer n, 4 < n <7, mg(P,, Kz,») = 6.
Proof. For 3 < n <5 by Theorem 2 in [8], we have m3(P,, K3,») = 6.

Next, by Theorem 1 in [8], we have the lower bound m3(R,, K3,,) > 6
for6<n<7.

To show the upper bound m3(PR,, K3,,) < 6, consider F = K3, 4. Let
F, © F, be any factorization of F so that F; contains no R,. We will show
that F, contains Ks,,. Let P be a longest path in F, and Q be a longest path
in graph F\V(P) and R be a longest path in graph F\V(P U Q). Letaand b

be the end vertices of P. Let ¢ and d be the end vertices of Q. Let e and f be
the end vertices of R. Since P, Q, and R are the longest paths, xy ¢ E(F;)

for each x, y e {a, b, c, d, e, f}. Let A, B, C be the partite sets of F. We
consider two possibilities.

Case 1. If a,be A c,d e B, and e, f € C, then uv ¢ E(F) for every
u,vefabrcd, e f}. Thus, theset {a, b, c, d, e, f} willinducea K,
in Fy. Therefore m3(Ksz,o, By) <6 for 6 <n<7.

Case 2. If a,b g A, c,d ¢ B, or e, f ¢ C. Without loss of generality,
we may assumeac AandbeB,ceBandd eC,andecC and f € C.

Clearly that ac, ae, ce ¢ Fy. Since |A|=|B|=|C|=86, there are three



On Size Multipartite Ramsey Numbers for Small Kq,; vs B, 1485

vertices, namely ue A, ve B, and we C such that uv, uw, vw ¢ F;.

Therefore, the set {a, u, c, v, e, w} will induce a Kz,p in Fp. Thus,

m3(Py, Kzyxp) <6 for 6 <n<7. O
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