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Abstract

An M/M/1 queue is considered subject to a policy of single working

vacation and multiple nonworking vacations. To be specific, the server
has 3 phases: (i) active phase (normal busy period), (ii) slow phase
(working vacation period), and (iii) nonworking vacation (full
vacation). Customers arrive according to a Poisson process with rate A
in all phases. During the normal busy period and working vacation
period, the service rates are, respectively, p, and p, such that

Ly < Hp.- When the server is in active phase serving a customer and

no further customer is available for service after completion of the
present service, the server immediately enters into a working vacation.
We assume that the working vacation period has an exponential
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distribution with parameter 0. If, at the expiry of working vacation, no
further customer is available in the system, the server begins a full
vacation immediately. A full vacation period is exponentially
distributed with parameter o. On the other hand, if at the expiry of
working vacation, at least one customer is available in the system, the
server switches to the active mode. At the expiry of a full vacation, if
the server finds no customer in the system, the server takes another full
vacation. On the other hand, if at the expiry of a full vacation, at least
one customer is available in the system, the server switches to the
active mode. Identifying a Markov process, time-dependent state
probability distribution of the queueing system is explicitly derived
and the steady-state results are deduced.

1. Introduction

Several vacation queue models have been proposed and investigated very
extensively for their immediate real-time applications in telecommunication
systems and computer networks. In most of the vacation queue models, the
server goes on vacation whenever the system becomes empty and resumes
work only when at least one customer is present in the system. A huge
variety of vacation policies such as single vacation and multiple vacations
have been introduced with the aim to optimize the working period of the
server. The monographs of Takagi [6] and Tian and Zhang [7] provide
excellent and elaborate treatment of such vacation queue models. Servi and
Finn [5] have generalized the classical vacation model by introducing a
policy called working vacation. They studied an M/M/1 queue with

multiple working vacations and obtained the probability generating function
of the number of customers in the system and the Laplace-Stieltjes transform
of the waiting time distribution. Further, their model is a multi-queue system
with two speeds mode where they achieved a better performance analysis of
a gateway router in fiber communication networks. In working vacation
period, the server works at a lower rate. If, at the expiry of a working
vacation, no further customer is available in the system, the server begins a
full vacation immediately. On the other hand, if at the expiry of working
vacation, at least one customer is available in the system, the server switches
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to the active mode. Liu et al. [3] have considered the working vacation policy
of Servi and Finn [5] and obtained simple explicit expressions for the
stationary queue length distribution and waiting time. Recently Xu and Tian
[10] have investigated an M /M /1 working vacation queue with setup times

(full vacation). They have used a matrix-solution method (see, for example,
Latouche and Ramaswamy [2] and Neuts [4]) and derived the steady-state
distribution of the system length. Several authors (for example, see van
Doorn [8] and Whitt [9]) have observed that time-dependent analysis is very
much essential in several applications of queueing theory. However, time-
dependent solutions are not easy to obtain in many situations. In the present
paper, we obtain the time-dependent solution for the model of Xu and Tian
[10] and deduce their steady-state results.

The organization of the paper is as follows. Section 2 describes the
model of the working vacation server with nonworking vacations. In Section
3, we obtain the governing equations for the time-dependent probabilities of
the system. In Section 4, we explicitly obtain the time-dependent expressions
for the state probabilities of the system. In Section 5, we deduce the
stationary results of Xu and Tian [10].

2. Model Description

Xu and Tian [10] studied an M/M /1 queue subject to a policy of single
working vacation and multiple nonworking vacations. To be specific, the
server has 3 phases: (i) active phase (normal busy period), (ii) slow phase
(working vacation period), and (iii) nonworking vacation (full vacation).
Customers arrive according to a Poisson process with rate A in all phases.
During the normal busy period and working vacation period, the service rates
are, respectively, p, and p, such that p, < pp. When the server is in
active phase serving a customer and no further customer is available for
service after completion of the present service, the server immediately enters
into a working vacation. We assume that the working vacation period has an
exponential distribution with parameter 6. If, at the expiry of working
vacation, no further customer is available in the system, the server begins a
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full vacation immediately. A full vacation period is exponentially distributed
with parameter o.. On the other hand, if at the expiry of working vacation, at
least one customer is available in the system, the server switches to the active
mode. At the expiry of a full vacation, if the server finds no customer in the
system, the server takes another full vacation. On the other hand, if at the
expiry of a full vacation, at least one customer is available in the system, the
server switches to the active mode. For this model, we identify a Markov
process and explicitly obtain the time-dependent state probability distribution
in the next section.

3. Governing Equations

Let J(t) denote the state of the system at time t. We set

0 when the server is in working vacation phase,
J(t) =41 when the server is in the multiple vacation phase,
2 when the server is in regular busy period (active phase).

Let Q(t) be the number of customers in the system at time t. Then the joint

process {Q(t), J(t):t > 0} is a Markov process. The state-space is given by
{0,0), 0,1} U{K, j): k=12 .;j=01 2.

The transition diagram is given below:
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At time t = 0, we assume that there are no customers in the system and
the server is in the working vacation. Then Q(0) =0 and J(0) =0. We
define

p, j, 1) = PrlQ(t) =i, J(t) = j], (3.1)

where Pr denotes probability measure. Let the symbol © denote the
convolution operator and we follow the notation

F(H)© gt) = j; F(U)g(t - u)du.
Using renewal-type arguments, we obtain

Casel.i=0and j=0
p(0, 0, t) = e L [p(1, 2, )y + p(L, 0, ), JOe O (3.2)

Case2.i>land j=0
p(i, 0, 1) = [p(i—=1 0, ) + p(i +1, 0, t)p,JOe P+t (33

Case3.i=0and j=1
p(0, 1, t) = p(0, 0, t)p@ e, (3.4)

Cased.izland j=1
p(i, 1 t) = p(i -1, 1, t)r@e *++ot, (3.5)

Caseb5.i=1land j=2
p(L 2, t) = [p(L 0,1)0 + p(2, 2, up + p(L 1 t)a]oe *HH0)t (36)

Case6.i>2and j=2

p(i, 2,t) =[p(i, 0,t)0 + p(i -1, 2, t)A

+p(+1 2,y + pi, 1, oo *Ht (37)

Using (3.2) to (3.7), we proceed to obtain p(i, j, t).
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4. Transient Analysis

We denote the Laplace transform of p(i, j, t) by

B, Jvs) = [ e (i, i, et @)
Using (3.2) to (3.7), we get
(s +%+0)p(0, 0,5) =1+ P(L. 2, Shup + PIL 0, S, @2
(s+%+py +0)pG, 0,5)=pli-10 )L+ pli+1 0, s)uy, i1 (4.3)
(s+2)p(0, 1, 5)=p(0, 0, s)H, (4.4)
(s+r+a)pi,Ls)=pli-11s)r ix=1 (4.5)
(s + 7+ 1) P 2,5) = BL 0. )0+ B2 2SIy + PALL ), (46)

(s+X+pp)pQ, 2,s)=p(i, 0,5)0+ p(i +1, 2, s)up

+ 93,1 s)a+ pli—-1,2 s)A, =2 4.7)
We define
Gj(u, )= fGi, js)u', j=01 (4.8)
i=0
G,(u, s) = i p(i, 2, s)u'. (4.9)
i=1

Using (4.5), we get

(s+A+a)p(0,1 s)
{s+rMl-u)+a} °

Gy(u, s) = (4.10)

From (4.4), we get

p(0, 0, )6

PO.18) ==577)

(4.11)
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Plugging (4.11) into (4.10), we get
(s+A+a)0p(0, 0, s)

Gl 8) = s+ Ad— 1)+ a)
0 — A i i
= S+k§(s+l+aj u'p(0, 0, s). (4.12)
From (4.12), we get
5.1 s) = sfk(s+77:+oc) 5(0,0,5), i>1. (4.13)

From (4.3), we get

Golu, = LB HAHOU iU DIF0.0.9) - wBL0.S)
(S+X+p, +0)u—2ru” —py

The denominator of éo(u, s) vanishes at the roots of the quadratic equation
(s+A+py +0)u—2u?—p, =0. (4.15)

The roots of (4.15) are given by

¢ :(S+k+uv+9)—\/(s+k+pv+6)2—4lpv

01 = @19
2 —
I:2:(s+k+u\,+9)+\/(s+7wru\,+9) 4?41\,. (4.17)

0. 2\
The roots (4.16) and (4.17) satisfy the conditions

Mu—Tfo1)(Fyo—U)=(S+A+p, +0)u—-Au—p,  (4.18)

~ ~ S+ A+ +0
fo,1 +1o,2 = —KHV , (4.19)

fo,10,2 = % (4.20)

| fO,l | < 1, | FO,Z | > 1. (421)
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Due to the analyticity of éo(u, s) inside | u| <1, we get

{(s + 1 +0)ip1 +ny(fo,1 —1)} PO, 0, s) — pyig 19(L 0, 5) = 0. (4.22)

From (4.22), we get

(s+A+0)fy 1 +uy(fo1—1)

p(L 0, s) = s
b ) Lyl 1

p(0, 0, s).

Plugging (4.23) into (4.14), we get

2 0,2 . S U
Go(u, s) = - p(0, 0, s) = Z(“—j fo,2u' P(0, O, s).

0,2 — e AN

From (4.24), we get

B(i, 0, s) = (Hij 71p0,05) i>1.

Vv

(4.23)

(4.24)

(4.25)

Multiplying both sides of (4.7) by u' and summing from 2 to oo, we get

[(s +A+up)—Au —LL—b}éz(u, s)

= (s + A+ pp)Up(L 2, s) - 0p(0, 0, s)

~0B(L 0, S)u — ppB(L 2, 5)— upP(2, 2, S)u

—ap(0,1, 5)— aP(l, 1, s)u + aGy(u, s)+ 0Gy(u, s).  (4.26)
Plugging (4.6) into (4.26) and simplifying, we get
G,(u, s) = ! 5 [0Gy(u, )+ 6Gq(u, s)
(S+A+pup)u—Au® —pp
= 0p(0, 0, s) = ppP(L, 2, 5) — ap(0, 1, s)]
u . . i
= —upP@, 2, s)+a ) p(i,1 s)u
(3+7~+Mb)U—XU2—Hb[ P 2:2) |Z_1: (19
+0> " p(i, 0, s)u‘}. (4.27)
i=1
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The denominator of (4.27) vanishes at the roots of the quadratic equation

(s+X+pp)u—2uZ —pp =0. (4.28)
The roots of (4.28) are
L (s h )~ (s + k) — Ahpy
fo1 = , (4.29)
' 2\
. (s+k+ub)+\/(s+k+pb)2—4kub
22 = . (4.30)
' 2\
The above roots satisfy the following conditions:
| lel | < 1, | I,’\2,2 | > 1, (431)
Mu—rFpq1)(F 0 —U)=Ss+L+pp, (4.32)
P,1f, 2 = u—f (4.33)

Using the analyticity of éz(u, s)in|u|<1 we get
p(l, 2, s) = Mi{az p(i, 1, s)fziyl + OZ p(i, 0, s)inyl}. (4.34)
b| = i=1

Plugging (4.34) into (4.27) and simplifying, we get

o jJ oo j—k i .
A MY oaiosi+j-2k ~
+Zzz(u_bj (Ej fo,1f5 1’ uJ}p(o, 0,5). (4.35)
From (4.35), we get

g
5(j, 2 S)—i o Zjli A j_k( A )ifi+j—2k
U, < T p | s+ A A&y s+i+a) 21
L& AR ci+j-2k | A :
+ZZ o ™ fo,1f5 1 p(0,0,s), j=>1.(4.36)
4 v
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To find p(0, 0, s), we use the relation
Go(L s) + Gy(1, s)+ Gy(L, 5) = % (4.37)

From (4.24), we have

Go(L s) = Z(Mi) 7 1p(0, 0, 5) = [ﬁj B0, 0, s). (4.38)

i=0 \"V

From (4.12), we have

Gi(L, 5) = S Ex;(s + 7?:+ OJ' PO, 0, 5)

0 S+HA+a)a
_(S+l)( S+a jp(o, 0, s). (4.39)
From (4.35), we have
R Xef\zyl OL(S + A+ (1)
Call. 5) = Hp — M1 {(5 +A)(s+a)(s+r+a-nh)

N vaO,l
(1y — Mg 1M 1) (1y — Mg 1)

} p(0, 0, s). (4.40)
Consequently, (4.37) gives

n _1 Ly 0 S+A+a
p(0, 0, 5) = s{[uv—lfo71j+(s+k)( S+a j

)\.eOL(S + A+ O(.) fZ,l
Ty — M) (5 + ) (5 + a)(S+ A+ o — A1)

N HyABF 1fp 1
(1p = My 1) (ny — Afg 12, 1) (uy — Mg 1)

-1
} . (4.41)

Substituting (4.13), (4.25) and (4.34) in (4.2) and solving for p(0, 0, s), we
get
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p(0, 0, s)

1
- N 7\,(16?2’1 K(Xefb,lfz’l '
(5+k+9‘kmﬁ‘{@+xxs+x+a—xag+¢W—xaﬂal
(4.42)
From (4.42), we obtain
0,0, 5) i Migy
p, Y, 8)=
jzo(s+k+6)”1
Rk _(Hl)J(jj[_(j_k)](_kJ
: [
xj+|+m+naj—kejI:I+lk+n'¢j+m+n
0.0 21 (4.43)

X ik 41+ jmk -
TR (R Ry CIEY WA - ) L (Y o) R

To obtain the inverse Laplace transform of (4.43), we make use of the
following well known results:

A e e (4.44)
(s +2))K (j—k -1~ PLi-k&h :

_1_ 1 —(h+0)t t]+|

- (s+A+ 9)j+|+1} = e 0 (j+ ) =02, j+|+1(t), (4.45)

— i 1 _(ita tj+m—k—1

- (s+7b+oc)j+m‘k}=e e (j+m-k-1)! = 03, jm-k (),

(4.46)

(I+k+n)/2
LAy = e ot (B T ey ot

= \Ifl,l+k+n(t)v (4.47)
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L—l[Fj+m+n] _ e—(7\.+pb)t(“_b

(j+m+n)/2
2,1 )y )

j+m+n
¥ | j+m+n(2t\/ App )

=V, j+m+n(t)' (4.48)

where 1,(t) is the modified Bessel function (see Abramowitz and Stegun
[1]). Now we obtain explicitly

p(0, 0, t) = D" Moy jua)© vy (1)
j=0

IR (e

8 k+n fj,k,l,m,n(t), (4.49)
Hy

where © represents the convolution operator and

fik.0,m,n(0)

= ¢1, j—k(t)©¢2, j+|+1(t)© ¢3, j+m—k(t)© Yy, I+k+n(t)© Vo, j+m+n(t)-

Inverting (4.25), we get

i
0(i, 0, t) = (Mij y1i©p(©,0,1), =1 (4.50)
\
Inverting (4.11), we get
p(0,1,t) = e @ p(0, 0, 1). (4.51)
Inverting (4.13), we get
p(i, 1 t) = be @95 (t)© p(0, 0, 1), i>1. (4.52)

Inverting (4.36), we get
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p(i. 2, 1)
0| g )
=—lae MO ¥ || V30O, i j_ak ()@ p(0, 0, 1)
Hb kelizk \MD
Lo ik
). (—j (—j v it)Ovy iy jak(t)©p(0,0,t) . (453)
=k “’b “‘V

k=1i

Equations (4.49), (4.50), (4.51), (4.52) and (4.53) provide explicit expressions
for describing the transient behaviour of the queueing system.

5. Steady-state Distribution

Let mp o = lim_,, p(m, n, t) be the steady-state distribution of the

system. For the existence of the steady-state solution, the denominator of
(4.42) should vanish at s = 0 and

A< pp. (5.1)
Plugging s = 0 in the denominator of (4.42), we get

LaBfy 1(0) .\ ABf 1(0)15,1(0)
AMA + o =2 1(0)) * py — Mg 1(0)15,1(0)

(x+e—x%lm»—{ }:oxaa

From (4.16) and (4.29), we get

— 2_
) 1(0) = Ot +0) “’;;f w0y oy
2
) 1(0) = (x+ub)—J(>»2; up)? = Ay 5.4

In tune with Xu and Tian [10], we set

F =

(A + py +9)_\/(7‘+“v +9)2 — 4y
20 , (5.5)



1370 S. Udayabaskaran and D. Sukumaran

A
- 5.6
P i (5.6)

Then we have the relation
f,1(0) = BV F (5.7)
Consequently, (5.2) gives

0
= . (5.8)

A
r 1-r

The condition (5.8) is in agreement with Xu and Tian [10]. Using (4.41),
(5.3), (5.4) and (5.6), we get

PN} -1
oy = 1A+Q+ 0 N 9(1—r+r22 _K (5.9)
1-F % al=p) ya-p)a-v)
Using (4.25), we get
N
Tig = (—j {f0,1(0)}' moo
w
RN
_(MJ(K )K
=K', i1 (5.10)
Using (4.11), we get
0 K6
o1 = XTEOO = T (511)
From (4.13), we get
o 2 Ko a .
Tcil_X(}\,—}—a) TCOO —T(x_l_a) y 1>1. (512)

From (4.36), we get
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i - k i i-k 2k
0| a A+ o A r
"2y IKZ( 27 () 2 () —1—f]“°°

j k-1 i
L C) i—k( A 1 ok j-k .
Hb{g p (7»+ocj Jr—l_F E rp } j=1 (5.13)

The results (5.9)-(5.13) are in agreement with Xu and Tian [10]. We can also
obtain (5.9) from (4.42). Multiplying both sides of (4.42) by s, we get

sp(0, 0, s)

_ S

h N 7»(19?2,1 7\,9?0‘1?2’1 '
(S T 0 xro’l) B {(S + 7»)(5 +A+o— 7\.?2’1) My — 7"¢0,1'¢2,1

(5.14)

Both the numerator and denominator of (5.14) become zero at s = 0.
Applying L’Hospital rule, (5.14) gives

1
oo = L q. q k(xel"\z’l (515)
B (ds rOll)s_O Tlds s+ a)(s+hra-by))
B (d 7»6?0,1?2,1 J
ds uy —Aoaf21 ) g
We find that
Ao me-n,
(ds rO,ljso =-S5, (5.16)
d . j 1
—. =——. 5.17
(ds 21 s=0 ny(-p) 617

Substituting (5.16) and (5.17) in (5.15), we get (5.9).
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