
 

Far East Journal of Mathematical Sciences (FJMS) 
© 2016 Pushpa Publishing House, Allahabad, India 
Published Online: October 2016 
http://dx.doi.org/10.17654/MS100091357 
Volume 100, Number 9, 2016, Pages 1357-1372 ISSN: 0972-0871

 

Received: March 19, 2016;  Accepted: July 22, 2016 
2010 Mathematics Subject Classification: 60K25, 90B22. 
Keywords and phrases: queueing system, Poisson arrival, exponential service, active phase, 
slow phase, full vacation, transient probability, steady-state behaviour. 

 ∗Corresponding author 
Communicated by K. K. Azad 

TRANSIENT ANALYSIS OF AN 1MM  QUEUE WITH A 

SINGLE WORKING VACATION AND MULTIPLE 
NONWORKING VACATIONS 

S. Udayabaskaran∗ and D. Sukumaran 

Department of Mathematics 
Vel Tech Rangarajan Dr. Sagunthala 

R&D Institute of Science and Technology 
Avadi, Chennai 600062, India 
e-mail: udayabaskaran.s@gmail.com 

Abstract 

An 1MM  queue is considered subject to a policy of single working 

vacation and multiple nonworking vacations. To be specific, the server 
has 3 phases: (i) active phase (normal busy period), (ii) slow phase 
(working vacation period), and (iii) nonworking vacation (full 
vacation). Customers arrive according to a Poisson process with rate λ 
in all phases. During the normal busy period and working vacation 
period, the service rates are, respectively, bμ  and vμ  such that 

.bv μ<μ  When the server is in active phase serving a customer and 

no further customer is available for service after completion of the 
present service, the server immediately enters into a working vacation. 
We assume that the working vacation period has an exponential 
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distribution with parameter θ. If, at the expiry of working vacation, no 
further customer is available in the system, the server begins a full 
vacation immediately. A full vacation period is exponentially 
distributed with parameter α. On the other hand, if at the expiry of 
working vacation, at least one customer is available in the system, the 
server switches to the active mode. At the expiry of a full vacation, if 
the server finds no customer in the system, the server takes another full 
vacation. On the other hand, if at the expiry of a full vacation, at least 
one customer is available in the system, the server switches to the 
active mode. Identifying a Markov process, time-dependent state 
probability distribution of the queueing system is explicitly derived 
and the steady-state results are deduced. 

1. Introduction 

Several vacation queue models have been proposed and investigated very 
extensively for their immediate real-time applications in telecommunication 
systems and computer networks. In most of the vacation queue models, the 
server goes on vacation whenever the system becomes empty and resumes 
work only when at least one customer is present in the system. A huge 
variety of vacation policies such as single vacation and multiple vacations 
have been introduced with the aim to optimize the working period of the 
server. The monographs of Takagi [6] and Tian and Zhang [7] provide 
excellent and elaborate treatment of such vacation queue models. Servi and 
Finn [5] have generalized the classical vacation model by introducing a 
policy called working vacation. They studied an 1MM  queue with 

multiple working vacations and obtained the probability generating function 
of the number of customers in the system and the Laplace-Stieltjes transform 
of the waiting time distribution. Further, their model is a multi-queue system 
with two speeds mode where they achieved a better performance analysis of 
a gateway router in fiber communication networks. In working vacation 
period, the server works at a lower rate. If, at the expiry of a working 
vacation, no further customer is available in the system, the server begins a 
full vacation immediately. On the other hand, if at the expiry of working 
vacation, at least one customer is available in the system, the server switches 
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to the active mode. Liu et al. [3] have considered the working vacation policy 
of Servi and Finn [5] and obtained simple explicit expressions for the 
stationary queue length distribution and waiting time. Recently Xu and Tian 
[10] have investigated an 1MM  working vacation queue with setup times 

(full vacation). They have used a matrix-solution method (see, for example, 
Latouche and Ramaswamy [2] and Neuts [4]) and derived the steady-state 
distribution of the system length. Several authors (for example, see van 
Doorn [8] and Whitt [9]) have observed that time-dependent analysis is very 
much essential in several applications of queueing theory. However, time-
dependent solutions are not easy to obtain in many situations. In the present 
paper, we obtain the time-dependent solution for the model of Xu and Tian 
[10] and deduce their steady-state results. 

The organization of the paper is as follows. Section 2 describes the 
model of the working vacation server with nonworking vacations. In Section 
3, we obtain the governing equations for the time-dependent probabilities of 
the system. In Section 4, we explicitly obtain the time-dependent expressions 
for the state probabilities of the system. In Section 5, we deduce the 
stationary results of Xu and Tian [10]. 

2. Model Description 

Xu and Tian [10] studied an 1MM  queue subject to a policy of single 

working vacation and multiple nonworking vacations. To be specific, the 
server has 3 phases: (i) active phase (normal busy period), (ii) slow phase 
(working vacation period), and (iii) nonworking vacation (full vacation). 
Customers arrive according to a Poisson process with rate λ in all phases. 
During the normal busy period and working vacation period, the service rates 
are, respectively, bμ  and vμ  such that .bv μ<μ  When the server is in 

active phase serving a customer and no further customer is available for 
service after completion of the present service, the server immediately enters 
into a working vacation. We assume that the working vacation period has an 
exponential distribution with parameter θ. If, at the expiry of working 
vacation, no further customer is available in the system, the server begins a 
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full vacation immediately. A full vacation period is exponentially distributed 
with parameter α. On the other hand, if at the expiry of working vacation, at 
least one customer is available in the system, the server switches to the active 
mode. At the expiry of a full vacation, if the server finds no customer in the 
system, the server takes another full vacation. On the other hand, if at the 
expiry of a full vacation, at least one customer is available in the system, the 
server switches to the active mode. For this model, we identify a Markov 
process and explicitly obtain the time-dependent state probability distribution 
in the next section. 

3. Governing Equations 

Let ( )tJ  denote the state of the system at time t. We set 

( )
( )⎪⎩

⎪
⎨
⎧

=
.phaseactiveperiodbusyregularinisserverthewhen2

phase,vacationmultipletheinisserverthewhen1
phase,vacationworkinginisserverthewhen0

tJ  

Let ( )tQ  be the number of customers in the system at time t. Then the joint 

process ( ) ( ){ }0:, ≥ttJtQ  is a Markov process. The state-space is given by 

( ) ( ){ } ( ){ }.2,1,0...;,2,1:,1,0,0,0 == jkjk∪  

The transition diagram is given below: 
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At time ,0=t  we assume that there are no customers in the system and 

the server is in the working vacation. Then ( ) 00 =Q  and ( ) .00 =J  We 

define 

 ( ) ( ) ( )[ ],,,, jtJitQPrtjip ===  (3.1) 

where Pr denotes probability measure. Let the symbol © denote the 
convolution operator and we follow the notation 

( ) ( ) ( ) ( )∫ −=©
t

duutguftgtf
0

.  

Using renewal-type arguments, we obtain 

Case 1. 0=i  and 0=j  

 ( ) ( ) ( ) ( )[ ] ( ) .,0,1,2,1,0,0 t
vb

t etptpetp θ+λ−θ+λ− ©μ+μ+=  (3.2) 

Case 2. 1≥i  and 0=j  

 ( ) ( ) ( )[ ] ( ) .,0,1,0,1,0, t
v vetiptiptip θ+μ+λ−©μ++λ−=  (3.3) 

Case 3. 0=i  and 1=j  

 ( ) ( ) .,0,0,1,0 tetptp λ−©θ=  (3.4) 

Case 4. 1≥i  and 1=j  

 ( ) ( ) ( ) .,1,1,1, tetiptip α+λ−©λ−=  (3.5) 

Case 5. 1=i  and 2=j  

 ( ) ( ) ( ) ( )[ ] ( ) .,1,1,2,2,0,1,2,1 t
b betptptptp μ+λ−©α+μ+θ=  (3.6) 

Case 6. 2≥i  and 2=j  

( ) ( ) ( )[ λ−+θ= tiptiptip ,2,1,0,,2,  

( ) ( ) ] ( ) .,1,,2,1 t
b betiptip μ+λ−©α+μ++  (3.7) 

Using (3.2) to (3.7), we proceed to obtain ( ).,, tjip  
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4. Transient Analysis 

We denote the Laplace transform of ( )tjip ,,  by 

 ( ) ( )∫
∞ −=
0

.,,,,ˆ dttjipesjip st  (4.1) 

Using (3.2) to (3.7), we get 

( ) ( ) ( ) ( ) ,,0,1ˆ,2,1ˆ1,0,0ˆ vb spspsps μ+μ+=θ+λ+  (4.2) 

( ) ( ) ( ) ( ) ,1,,0,1ˆ,0,1ˆ,0,ˆ ≥μ++λ−=θ+μ+λ+ isipsipsips vv  (4.3) 

( ) ( ) ( ) ,,0,0ˆ,1,0ˆ θ=λ+ spsps  (4.4) 

( ) ( ) ( ) ,1,,1,1ˆ,1,ˆ ≥λ−=α+λ+ isipsips  (4.5) 

( ) ( ) ( ) ( ) ( ) ,,1,1ˆ,2,2ˆ,0,1ˆ,2,1ˆ α+μ+θ=μ+λ+ spspspsps bb  (4.6) 

( ) ( ) ( ) ( ) bb sipsipsips μ++θ=μ+λ+ ,2,1ˆ,0,ˆ,2,ˆ  

( ) ( ) .2,,2,1ˆ,1,ˆ ≥λ−+α+ isipsip  (4.7) 

We define 

( ) ( )∑
∞

=
==

0
,1,0,,,ˆ,ˆ

i

i
j jusjipsuG  (4.8) 

( ) ( )∑
∞

=
=

1
2 .,2,ˆ,ˆ

i

iusipsuG  (4.9) 

Using (4.5), we get 

 ( ) ( ) ( )
( ){ } .1

,1,0ˆ
,ˆ

1 α+−λ+
α+λ+

= us
spssuG  (4.10) 

From (4.4), we get 

 ( ) ( )
( ) .,0,0ˆ

,1,0ˆ
λ+

θ
= s

spsp  (4.11) 
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Plugging (4.11) into (4.10), we get 

( ) ( ) ( )
( ) ( ){ }α+−λ+λ+

θα+λ+
= uss

spssuG 1
,0,0ˆ

,ˆ
1  

( )∑
∞

=
⎟
⎠
⎞⎜

⎝
⎛

α+λ+
λ

λ+
θ=

0
.,0,0ˆ

i

i
i

spuss  (4.12) 

From (4.12), we get 

 ( ) ( ) .1,,0,0ˆ,1,ˆ ≥⎟
⎠
⎞⎜

⎝
⎛

α+λ+
λ

λ+
θ= ispsssip

i
 (4.13) 

From (4.3), we get 

( ) ( ) ( ){ } ( ) ( )
( )

.,0,1ˆ,0,0ˆ1,ˆ
20

vv

vv

uus
spuspuussuG

μ−λ−θ+μ+λ+

μ−−μ+θ+λ+
=  (4.14) 

The denominator of ( )suG ,ˆ
0  vanishes at the roots of the quadratic equation 

 ( ) .02 =μ−λ−θ+μ+λ+ vv uus  (4.15) 

The roots of (4.15) are given by 

( ) ( ) ,2
4ˆ

2

1,0 λ
λμ−θ+μ+λ+−θ+μ+λ+

= vvv ssr  (4.16) 

( ) ( ) .2
4ˆ

2

2,0 λ
λμ−θ+μ+λ++θ+μ+λ+

= vvv ssr  (4.17) 

The roots (4.16) and (4.17) satisfy the conditions 

( ) ( ) ( ) ,ˆˆ 2
2,01,0 vv uusurru μ−λ−θ+μ+λ+=−−λ  (4.18) 

,ˆˆ 2,01,0 λ
θ+μ+λ+

=+ vsrr  (4.19) 

,ˆˆ 2,01,0 λ
μ

= vrr  (4.20) 

.1ˆ,1ˆ 2,01,0 >< rr  (4.21) 
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Due to the analyticity of ( )suG ,ˆ
0  inside ,1<u  we get 

{( ) ( )} ( ) ( ) .0,0,1ˆˆ,0,0ˆ1ˆˆ 1,01,01,0 =μ−−μ+θ+λ+ sprsprrs vv  (4.22) 

From (4.22), we get 

 ( )
( ) ( )

( ).,0,0ˆˆ
1ˆˆ

,0,1ˆ
1,0

1,01,0 spr
rrs

sp
v

v
μ

−μ+θ+λ+
=  (4.23) 

Plugging (4.23) into (4.14), we get 

 ( ) ( ) ( )∑
∞

=
⎟
⎠
⎞

⎜
⎝
⎛
μ
λ=

−
=

0
1,0

2,0

2,0
0 .,0,0ˆˆ,0,0ˆˆ

ˆ
,ˆ

i

ii
i

v
spurspur

r
suG  (4.24) 

From (4.24), we get 

 ( ) ( ) .1,,0,0ˆˆ,0,ˆ 1,0 ≥⎟
⎠
⎞

⎜
⎝
⎛
μ
λ= isprsip i

i

v
 (4.25) 

Multiplying both sides of (4.7) by iu  and summing from 2 to ∞, we get 

( ) ( )suGuus b
b ,ˆ

2⎥⎦
⎤

⎢⎣
⎡ μ

−λ−μ+λ+  

( ) ( ) ( )spspus b ,0,0ˆ,2,1ˆ θ−μ+λ+=  

( ) ( ) ( )uspspusp bb ,2,2ˆ,2,1ˆ,0,1ˆ μ−μ−θ−  

( ) ( ) ( ) ( ).,ˆ,ˆ,1,1ˆ,1,0ˆ 01 suGsuGuspsp θ+α+α−α−  (4.26) 

Plugging (4.6) into (4.26) and simplifying, we get 

( )
( )

[ ( ) ( )suGsuG
uus

usuG
bb

,ˆ,ˆ,ˆ
0122 θ+α

μ−λ−μ+λ+
=  

( ) ( ) ( )]spspsp b ,1,0ˆ,2,1ˆ,0,0ˆ α−μ−θ−  

( )
( ) ( )

⎢
⎢
⎣

⎡
α+μ−

μ−λ−μ+λ+
= ∑

∞

=1
2 ,1,ˆ,2,1ˆ

i

i
b

bb
usipsp

uus
u  

( ) .,0,ˆ
1 ⎥

⎥
⎦

⎤
θ+ ∑
∞

=i

iusip  (4.27) 
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The denominator of (4.27) vanishes at the roots of the quadratic equation 

 ( ) .02 =μ−λ−μ+λ+ bb uus  (4.28) 

The roots of (4.28) are 

( ) ( ) ,2
4ˆ

2

1,2 λ
λμ−μ+λ+−μ+λ+

= bbb ssr  (4.29) 

( ) ( ) .2
4ˆ

2

2,2 λ
λμ−μ+λ++μ+λ+

= bbb ssr  (4.30) 

The above roots satisfy the following conditions: 

,1ˆ,1ˆ 2,21,2 >< rr  (4.31) 

( ) ( ) ,ˆˆ 2,21,2 bsurru μ+λ+=−−λ  (4.32) 

.ˆˆ 2,21,2 λ
μ

= brr  (4.33) 

Using the analyticity of ( )suG ,ˆ
2  in ,1≤u  we get 

 ( ) ( ) ( ) .ˆ,0,ˆˆ,1,ˆ1,2,1ˆ
1 1

1,21,2
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
θ+α

μ
= ∑ ∑

∞

=

∞

=i i

ii

b
rsiprsipsp  (4.34) 

Plugging (4.34) into (4.27) and simplifying, we get 

( )
⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛

α+λ+
λ

⎟
⎠
⎞

⎜
⎝
⎛
μ
λ

λ+
α

μ
θ= ∑∑∑

∞

= =

∞

=

−+
−

1 1

2
1,22 ˆ,ˆ

j

j

k ki

jkji
ikj

bb
ursssuG  

( ).,0,0ˆˆˆ
1 1

2
1,21,0 spurr

j

j

k ki

jkjii
i

v

kj

b ⎥
⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛
μ
λ

⎟
⎠
⎞

⎜
⎝
⎛
μ
λ+ ∑∑∑

∞

= =

∞

=

−+
−

 (4.35) 

From (4.35), we get 

( )
⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛

α+λ+
λ

⎟
⎠
⎞

⎜
⎝
⎛
μ
λ

λ+
α

μ
θ= ∑∑

=

∞

=

−+
−j

k ki

kji
ikj

bb
rsssjp

1

2
1,2̂,2,ˆ  

( ) .1,,0,0ˆˆˆ
1

2
1,21,0 ≥

⎥
⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛
μ
λ

⎟
⎠
⎞

⎜
⎝
⎛
μ
λ+∑∑

=

∞

=

−+
−

jsprr
j

k ki

kjii
i

v

kj

b
 (4.36) 
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To find ( ),,0,0ˆ sp  we use the relation 

 ( ) ( ) ( ) .1,1ˆ,1ˆ,1ˆ
210 ssGsGsG =++  (4.37) 

From (4.24), we have 

 ( ) ( ) ( )∑
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ−μ

μ
=⎟

⎠
⎞

⎜
⎝
⎛
μ
λ=

0 1,0
1,00 .,0,0ˆˆ,0,0ˆˆ,1ˆ

i v
vi

i

v
sprsprsG  (4.38) 

From (4.12), we have 

( ) ( )∑
∞

=
⎟
⎠
⎞⎜

⎝
⎛

α+λ+
λ

λ+
θ=

ki

i
spsssG ,0,0ˆ,1ˆ

1  

( ).,0,0ˆ sps
s

s ⎟
⎠
⎞⎜

⎝
⎛

α+
α+λ+

⎟
⎠
⎞⎜

⎝
⎛

λ+
θ=  (4.39) 

From (4.35), we have 

( ) ( )
( ) ( ) ( )⎢
⎣

⎡
λ−α+λ+α+λ+

α+λ+α
λ−μ

λθ
=

1,21,2

1,2
2 ˆˆ

ˆ
,1ˆ

rsss
s

r
r

sG
b

 

( ) ( ) ( ).,0,0ˆˆˆˆ
ˆ

1,01,21,0

1,0 sprrr
r

vv

v
⎥
⎦

⎤
λ−μλ−μ

μ
+  (4.40) 

Consequently, (4.37) gives 

( ) ⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛

α+
α+λ+

⎟
⎠
⎞⎜

⎝
⎛

λ+
θ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
λ−μ

μ
= s

s
srssp

v
v

1,0̂

1,0,0ˆ  

( )
( ) ( ) ( ) ( )1,21,2

1,2
ˆˆ

ˆ
rsssr

rs

b λ−α+λ+α+λ+λ−μ
α+λ+λθα

+  

( ) ( ) ( ) .ˆˆˆˆ
ˆˆ 1

1,01,21,01,2

1,01,2
−

⎥
⎦

⎤
λ−μλ−μλ−μ

λθμ
+ rrrr

rr

vvb

v  (4.41) 

Substituting (4.13), (4.25) and (4.34) in (4.2) and solving for ( ),,0,0ˆ sp  we 

get 
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( )sp ,0,0ˆ  

( ) ( ) ( )

.

ˆˆ
ˆˆ

ˆ
ˆ

ˆ

1

1,21,0

1,21,0

1,2

1,2
1,0

⎭
⎬
⎫

⎩
⎨
⎧

λ−μ
λαθ

+
λ−α+λ+λ+

λαθ
−λ−θ+λ+

=

rr
rr

rss
r

rs
v

 

 (4.42) 

From (4.42), we obtain 

( )
( )∑

∞

=
+θ+λ+

λ
=

0
1

1,0̂,0,0ˆ
j

j

jj

s

r
sp  

( ) ( )∑∑∑∑∑
∞

=

∞

= =

∞

=

∞

=
⎟
⎠
⎞

⎜
⎝
⎛−
⎟
⎠
⎞

⎜
⎝
⎛ −−
⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−

+
1 0 0 0 0

1

j l

j

k m n n
k

m
kj

k
j

l
j

 

( ) ( ) ( )
.

ˆˆ
1

1,21,0
kmjljkjnk

v

nmjnkljkjnmlj

sss

rr
−+++−+

++++−+++

α+λ+θ+λ+λ+μ

θαλ
×  (4.43) 

To obtain the inverse Laplace transform of (4.43), we make use of the 
following well known results: 

( ) ( ) ( ),!1
1

,1
1

1 tkj
te

s
L kj

kj
t

kj −

−−
λ−

−
− φ=

−−
=⎥

⎦

⎤
⎢
⎣

⎡

λ+
 (4.44) 

( )
( )

( ) ( ),!
1

1,21
1 tlj

te
s

L lj
lj

t
lj ++

+
θ+λ−

++
− φ=

+
=⎥

⎦

⎤
⎢
⎣

⎡

θ+λ+
 (4.45) 

( )
( )

( ) ( ),!1
1

,3
1

1 tkmj
te

s
L kmj

kmj
t

kmj −+

−−+
α+λ−

−+
− φ=

−−+
=⎥

⎦

⎤
⎢
⎣

⎡

α+λ+
 

 (4.46) 

[ ] ( )
( ) ( ) ( )vnkl

nkl
vtnkl tIt

nklerL v λμ++
⎟
⎠
⎞

⎜
⎝
⎛
λ
μ

= ++

++
μ+θ+λ−++− 2ˆ

2

1,0
1  

( ),,1 tnkl ++ψ=  (4.47) 
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[ ] ( )
( ) ( ) ( )bnmj

nmj
btnmj tIt

nmjerL b λμ++
⎟
⎠
⎞

⎜
⎝
⎛
λ
μ

= ++

++
μ+λ−++− 2ˆ

2

1,2
1  

( ),,2 tnmj ++ψ=  (4.48) 

where ( )tIv  is the modified Bessel function (see Abramowitz and Stegun 

[1]). Now we obtain explicitly 

( ) ( ) ( )∑
∞

=
+ ψ©φλ=

0
,11,2,0,0

j
jj

j tttp  

( ) ( )∑∑∑∑∑
∞

=

∞

= =

∞

=

∞

=
⎟
⎠
⎞

⎜
⎝
⎛−
⎟
⎠
⎞

⎜
⎝
⎛ −−
⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−

+
1 0 0 0 0

1

j l

j

k m n n
k

m
kj

k
j

l
j

 

( ),,,,, tf nmlkjnk
v

jkjnmlj

+

−+++

μ

θαλ×  (4.49) 

where © represents the convolution operator and 

( )tf nmlkj ,,,,  

( ) ( ) ( ) ( ) ( ).,2,1,31,2,1 ttttt nmjnklkmjljkj ++++−+++− ψ©ψ©φ©φ©φ=  

Inverting (4.25), we get 

 ( ) ( ) ( ) .1,,0,0,0, ,1 ≥©ψ⎟
⎠
⎞

⎜
⎝
⎛
μ
λ= itpttip i

i

v
 (4.50) 

Inverting (4.11), we get 

 ( ) ( ).,0,0,1,0 tpetp t©θ= λ−  (4.51) 

Inverting (4.13), we get 

 ( ) ( ) ( ) .1,,0,0,1, ,3 ≥©φλ©θ= λ− itptetip i
it  (4.52) 

Inverting (4.36), we get 
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( )tjp ,2,  

( ) ( ) ( )
⎢
⎢
⎣

⎡
©ψ©φλ⎟

⎠
⎞

⎜
⎝
⎛
μ
λ©α

μ
θ= ∑∑

=

∞

=
−+

−
λ−

j

k ki
kjii

i
kj

b

t

b
tptte

1
2,2,3 ,0,0  

( ) ( ) ( ) .,0,0
1

2,2,1
⎥
⎥
⎦

⎤
©ψ©ψ⎟

⎠
⎞

⎜
⎝
⎛
μ
λ

⎟
⎠
⎞

⎜
⎝
⎛
μ
λ+ ∑∑

=

∞

=
−+

−j

k ki
kjii

i

v

kj

b
tptt  (4.53) 

Equations (4.49), (4.50), (4.51), (4.52) and (4.53) provide explicit expressions 
for describing the transient behaviour of the queueing system. 

5. Steady-state Distribution 

Let ( )tnmptnm ,,lim, ∞→=π  be the steady-state distribution of the 

system. For the existence of the steady-state solution, the denominator of 
(4.42) should vanish at 0=s  and 

 .bμ<λ  (5.1) 

Plugging 0=s  in the denominator of (4.42), we get 

( ( ))
( )

( ( ))
( ) ( )
( ) ( ) .00ˆ0ˆ

0ˆ0ˆ
0ˆ

0ˆ
0ˆ

1,21,0

1,21,0

1,2

1,2
1,0 =

⎭
⎬
⎫

⎩
⎨
⎧

λ−μ
λθ

+
λ−α+λλ

λαθ
−λ−θ+λ rr

rr
r

r
r

v
 (5.2) 

From (4.16) and (4.29), we get 

( ) ( ) ( ) ,2
40ˆ

2

1,0 λ
λμ−θ+μ+λ−θ+μ+λ

= vvvr  (5.3) 

( ) ( ) ( ) .12
40ˆ

2

1,2 =
λ

λμ−μ+λ−μ+λ
= bbbr  (5.4) 

In tune with Xu and Tian [10], we set 

( ) ( ) ,2
4ˆ

2

v
vvvr

μ
λμ−θ+μ+λ−θ+μ+λ

=  (5.5) 
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.
bμ
λ=ρ  (5.6) 

Then we have the relation 

 ( ) .ˆ0ˆ 1,0 rr v
λ
μ

=  (5.7) 

Consequently, (5.2) gives 

 .ˆ1ˆ vrr μ+
−
θ=λ  (5.8) 

The condition (5.8) is in agreement with Xu and Tian [10]. Using (4.41), 
(5.3), (5.4) and (5.6), we get 

( )
( )
( ) ( )

.
ˆ11

ˆˆ1
1ˆ1

1
1

2

2
00 K

r
rr

r
b

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−ρ−μ

+−θ
+

ρ−α
θ+

λ
θ+

−
=π

−

 (5.9) 

Using (4.25), we get 

{ ( )} 001,00 0ˆ π⎟
⎠
⎞

⎜
⎝
⎛
μ
λ=π i

i

v
i r  

Kr
i

v
i

v
⎟
⎠
⎞

⎜
⎝
⎛
λ
μ

⎟
⎠
⎞

⎜
⎝
⎛
μ
λ= ˆ  

.1,ˆ ≥= irK i  (5.10) 

Using (4.11), we get 

 .0001 λ
θ=π

λ
θ=π K  (5.11) 

From (4.13), we get 

 .1,001 ≥⎟
⎠
⎞⎜

⎝
⎛

α+λ
λ

λ
θ=π⎟

⎠
⎞⎜

⎝
⎛

α+λ
λ

λ
θ=π iK ii

i  (5.12) 

From (4.36), we get 
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00
1 1

2 ˆ1
ˆ

π
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−⎟
⎠
⎞

⎜
⎝
⎛
μ
λ+

α
α+λ

⎟
⎠
⎞⎜

⎝
⎛

α+λ
λ

⎟
⎠
⎞

⎜
⎝
⎛
μ
λ

λ
α

μ
θ=π ∑ ∑

= =

−−j

k

j

k

kkj

b

kkj

bb
j r

r  

Kr
r

j

k

j

k

k
kj

k
kj

b ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
ρ+⎟

⎠
⎞⎜

⎝
⎛

α+λ
λρ

λ
α+λ

μ
θ= ∑ ∑

= =

−−

1 1
ˆ1

ˆ  

.1,ˆˆ1
1

1 1

1
≥

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ρ

−
+⎟

⎠
⎞⎜

⎝
⎛

α+λ
λρ

μ
θ= ∑ ∑

= =

−
−

− jrr
K

j

k

j

k

kjk
k

kj

b
 (5.13) 

The results (5.9)-(5.13) are in agreement with Xu and Tian [10]. We can also 
obtain (5.9) from (4.42). Multiplying both sides of (4.42) by s, we get 

( )sps ,0,0ˆ  

( ) ( ) ( )

.

ˆˆ
ˆˆ

ˆ
ˆ

ˆ
1,21,0

1,21,0

1,2

1,2
1,0

⎭
⎬
⎫

⎩
⎨
⎧

λ−μ
λθ

+
λ−α+λ+λ+

λαθ
−λ−θ+λ+

=

rr
rr

rss
r

rs

s

v

 

 (5.14) 

Both the numerator and denominator of (5.14) become zero at .0=s  
Applying L’Hospital rule, (5.14) gives 

( ) ( )

.

ˆˆ
ˆˆ

ˆ
ˆ

ˆ1

1

01,21,0

1,21,0
01,2

1,2

0
1,0

00

=

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ−μ

λθ
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ−α+λ+λ+

λαθ
−⎟

⎠
⎞⎜

⎝
⎛λ−

=π

sv

ss

rr
rr

ds
d

rss
r

ds
drds

d
 (5.15) 

We find that 

( ) ,ˆ
ˆ1ˆ

0
1,0 rrrds

d v

s λθ
−μ

−=⎟
⎠
⎞⎜

⎝
⎛

=
 (5.16) 

( ) .1
1ˆ

0
1,2 ρ−μ

−=⎟
⎠
⎞⎜

⎝
⎛

= vs
rds

d  (5.17) 

Substituting (5.16) and (5.17) in (5.15), we get (5.9). 
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