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Abstract 

This paper deals with a family of balanced methods which own the 
implicit iterative scheme in the diffusion term for the stochastic delay 
integro-differential equations. It is shown that the balanced implicit 
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methods, which are fully implicit methods, give strong convergence 
rate of at least 1/2 and that the strong balanced methods can preserve 
the linear mean-square stability with the sufficiently small stepsize. 
Weak variants are also considered and their mean-square stability is 
analyzed. Some numerical experiments are given to demonstrate the 
conclusions and to show that the fully implicit methods are superior to 
those of the explicit methods in terms of mean-square stabilities. 

1. Introduction 

Stochastic delay integro-differential equations (SDIDEs) are often used 
to model some problems in a variety of application areas including 
population dynamics [1], engineering, physics [2], economy [3, 4] and so on. 
Unfortunately, stochastic delay differential equations rarely have explicit 
solutions. Thus, appropriate numerical methods are needed to apply in 
practice and to study their properties. 

The numerical analysis of stochastic delay differential equations 
(SDDEs) is well studied, for instance, Baker and Buckwar [5, 6], Küchler 
and Platen [7], Mao and Sabanis [8], Liu et al. [9], Wang et al. [10], Cao and 
Zhang [11], Wu and Ding [12], Zhao et al. [13] and Zhang et al. [14, 15]. As 
for SDIDEs, there has been much less research of numerical schemes. Mao 
[17] discussed the stability of SDIDEs. Ding et al. [16] discussed the 
convergence and stability of the semi-implicit Euler method for SDIDEs. Tan 
and Wang [18] considered the convergence and mean-square stability of the 
split-step backward Euler (SSBE) method for SDIDEs. Li and Gan [19] 
investigated the mean-square exponential stability of stochastic theta 
methods for nonlinear SDIDEs. 

However, it is already known that the majority of these discrete 
approximations for SDIDEs are not fully implicit methods, they are only 
implicit in the drift coefficient. These drift-implicit methods are well adapted 
for stiff systems with small stochastic noise intensity or additive noise. But in 
those cases in which the stochastic part plays an essential role in the 
dynamics, e.g., as it is with large multiplicative noise, the application of fully 
implicit methods also involving implicit stochastic terms is unavoidable. One 
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of the most important fully implicit methods is the balanced implicit 
methods, which were firstly introduced by Milstein et al. [21] and used to 
solve stiff systems. Some recent papers which consider the balanced implicit 
methods for the stochastic differential equations include [20, 22-24]. 

Consider the following scalar linear stochastic delay integro-differential 
equation: 
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where ( ),3,2,1, =∈βα iii R  τ  is a positive fixed delay, ( )tϕ  is a 

[ ]( ),;0, Rτ−C  ( )tW  is a scalar Brownian motion, both defined on an 

appropriate complete probability space ( { } ),,,, 0 P≥Ω ttFF  with a filtration 

{ } 0≥ttF  satisfying the usual conditions (i.e., it is increasing and right-

continuous while 0F  contains all P -null sets). 

Lemma 1.1. For any given ,0>T  there exist positive numbers 1η  and 

2η  such that the solution ( )tx  of (1.1) satisfies 

 ( ( ) ) [ ],1sup 2
1

2 ϕ+η≤
≤≤τ−

EE sx
ts

 (1.2) 

for all [ ],, Tt τ−∈  

 ( ) ( ) ( ),2
2 stsxtx −η≤−E  (1.3) 

for any .1,0 <−≤<≤ stTts  

For the proof of inequality (1.2), we refer to [25, Chapter 3, Theorem 
5.1]. Further, inequality (1.3) can be obtained from (1.2). 
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Regarding numerical analysis of (1.1), Hu and Huang [26] investigated 
the mean-square stability of stochastic-methods for SDIDEs (1.1). However, 
to the best of our knowledge, there are no stability results of implicit methods 
for the system (1.1). In this paper, the balanced implicit methods are 
proposed for SDIDEs (1.1). Our aim is to investigate the strong mean-square 
convergence and mean-square stability of the balanced implicit methods of 
the system (1.1). The rest of the paper is organized as follows. In the 
subsequent section, Theorem 2.1 is established to showing the strong 
balanced implicit methods are convergent with strong order .21  Section 3 

and Section 4 deal with linear mean-square stability of the strong balanced 
implicit methods and the weak balanced implicit methods. In Section 5, some 
numerical experiments are given to demonstrate the conclusions. Finally, 
conclusion is made in Section 6. 

2. Convergence of the Balanced Implicit Methods 

Given a stepsize ,0>τ= mh  a version of strong balanced methods for 

(1.1) is given by 
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where nY  is an approximation to ( )ntx  with ( ) ( )., 1 nnnn tWtWWnht −=∆= +  

Here nY~  denotes 

 ∑
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k
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1
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Here nD  is given by 

( ) ( ) nnmnnnnmnnnn WYYYDhYYYDD ∆+= −−
~,,~,, 10  

,10 nnn WDhD ∆+=  (2.3) 
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where ( ),~,,00 nmnnnn YYYDD −=  ( )nmnnnn YYYDD ~,,11 −=  are called 

control functions. In order to obtain our main results in this paper, we assume 
that nn DD 10 ,  in equation (2.3) are constants, that is, == nn DDD 100 ,  .1D  

In addition, 10, DD  which are uniformly bounded satisfy the following 

condition. 

Assumption 1. For any real numbers [ ],,00 α∈α  ,01 ≥α  where 

h≥α  for all step sizes h considered, the constants 10, DD  satisfy 

.1 1
1100 ∞<≤α+α+ − HDD  

Therefore, (2.1) can be rewritten as follows: 

( ) [( )hYYYDYY nmnnnnn
~1 321

1
1 α+α+α++= −

−
+  

( ) ] .0,~
321 ≥∆β+β+β+ − nWYYY nnmnn  (2.4) 

We denote by ( )1+ntx  the value of the exact solution of (1.1) at the mesh 

point 1+nt  and by 1+nY  the value of the approximation solution using (2.4). 

Furthermore, we denote by ( )1+ntY  the value that is obtained when the exact 

solution values are inserted into the right-hand side of (2.4), that is, 
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Based on the definition introduced in [27, 28], we give the following 
definitions. 

Definition 2.1. The local error of method (2.1) is defined as follows: 

( ) ( ) .1...,,1,0,: 111 −=−=δ +++ NntYtx nnn  

The global error of method (2.1) is defined as follows: 

( ) ....,,1,0,: NnYtx nnn =−=ε  

Throughout this work, we use ...,, 21 CC  to denote generic constants, 

independent of h. 

Lemma 2.1. There exist positive numbers 3η  and 4η  such that the 

numerical solution produced by the balanced method (2.1) to approximate 
the solution of equation (1.1) satisfies 
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Proof. It follows from (2.5) and Definition 2.1, we get 
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Thus, employing mathematical expectation and using the properties of the Itõ 
integral, we obtain 

( )1+δnE  
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For [ ],, 1+∈∀ nn ttt  using (1.2), (1.3) and (2.7) yields 
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We notice the assumption that the 10, DD  are uniformly bounded, that is 

to say, there exists a positive constant B such that ( ).1,0=≤ iBDi  Using 

Assumption 1, ,2
π

=∆ hWnE  (1.2), (2.6) and (2.7) give 
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Combining (1.3), (2.12), (2.13) with (2.11) yields 
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It follows from (1.3), we get 
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[ ( ) ]22
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Now we give the main theorem in this section. 

Theorem 2.1. The numerical solution produced by the balanced methods 
(2.1) converges to the exact solution of (1.1) on the mesh point in the mean-

square sense with strong order ,2
1  i.e., there exists a positive constant 5η  

such that 
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( ) ( ) ( )( ) ] ( ) 1
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Using Assumption 1, ,3,, 242 hWhWBD nni =∆=∆≤ EE  (1.2), 

(2.7) and (2.24) give 
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It follows (2.8) that 
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Combining (2.22), (2.30), (2.31), (2.32) with (2.21) yields 
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Letting ( ) ( ),...,1,0max 0
2

0 =|ε= ≤≤ nG tinin FE  it is not difficult to 

find ,00 =R  hence (2.33) becomes 
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Theorem 2.1 shows that the balanced methods have strong convergence 
rate of at least .21  Having established the acceptable finite time convergence 

of the balanced methods, in the next section, we consider long-time stability. 

3. Mean-square Stability of Strong Balanced Methods 

We investigate the mean-square stability of the strong balanced methods 
in this section. 

Since the system (1.1) has no explicit solution. The following lemma 
gives the sufficient condition on the stability for the analytic solution of the 
system (1.1). 

Lemma 3.1 [26]. Assume that 3,2,1,, =βα iii  satisfy 

 ( ) .02
321321 <τβ+β+β+τα+α+α  (3.1) 

Then the solution of (1.1) is asymptotically stable in the mean-square, that is,  

( )( ) .0lim 2 =∞→ nn txE  
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Given parameters 3,2,1,, =βα iii  and stepsize h, we say the balanced 

implicit methods are mean-square stable if ( ) 0lim 2 =∞→ nn YE  for any .0Y  

The following theorem will show the mean-square stability of the balanced 
implicit methods. 

Theorem 3.1. Under the condition (3.1) and Assumption 1, for the 
sufficiently small stepsize h, the balanced implicit methods (2.1) are mean-
square stable for the linear system (1.1). 

Proof. Squaring and taking expectation on both sides of (2.4) yields 

2
1+nYE  

( ) ( )2321
222 ~1 nmnnnn YYYDhY α+α+α++= −
−EE  

( ) ( ) ( )nmnnnmnnnn YYYYYYWDh ~~12 321321
1 β+β+βα+α+α∆++ −−
−E  

( ) ( )2321
21 ~1 nmnnnn YYYWD β+β+β∆++ −

−E  

( ) ( )nmnnnn YYYDYh ~12 321
1 α+α+α++ −
−EE  

( ) ( ).~12 321
1

nmnnnnn YYYWDY β+β+β∆++ −
−E  (3.2) 

Letting ξ  be independent standard normal random variable, we know that 

( ( ) )11 −+∆ nn DWE  

 ( )∫
∞+

∞−
−−

=++
π

= .01
2

1
102

2

dxxhDhDxeh
nn

x
 (3.3) 

Similarly 

( ( ) )21 −+∆ nn DWE  

 ( )∫
∞+

∞−
−−

=++
π

= .01
2

2
102

2

dxxhDhDxeh
nn

x
 (3.4) 
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By (3.3), (3.4), thus (3.2) becomes 

[ ( ) ( ) ( ) 22222
3

2
2

2
1

22
1 113331 nnnn WDDhY ∆+++τα+α+α+≤ −−
+ EEE  

( )τββ+τββ+ββ+τβ+β+β⋅ 323121
22

3
2
2

2
1 222  

( ) ( ) ] 21
321 max1222 inimnn YDh EE ≤≤−

− ⋅+τα+α+α+  

( ) .max,,,,,,, 2
321321 inimnn YWhR E≤≤−∆βββααα=  (3.5) 

Here 

( )nWhR ∆βββααα ,,,,,,, 321321  

( ) ( ) ( ) 22222
3

2
2

2
1

2 113331 nnn WDDh ∆+++τα+α+α+= −− EE  

( )τββ+τββ+ββ+τβ+β+β⋅ 323121
22

3
2
2

2
1 222  

( ) ( ) .1222 1
321

−+τα+α+α+ nDh E  (3.6) 

From this, we see that ( ) 0lim 2 =∞→ nn YE  if and only if 

 ( ) .1,,,, <∆ηβα nWhR  (3.7) 

It is not difficult to find that 

( ( ) )22 1 −+∆ nn DWE  

 
( )

.
112 2

2
22













+
∆+





+
∆−=

n

n
n

n
n

n
D

DWD
DWh EE  (3.8) 

Using Assumption 1 and properties of nn DW ,∆  gives 







+
∆−

n
n

n D
DW 12 2E  

[ ]nnnn WDhDWH ∆+∆≤ 10
22 E  

( )23hO=  (3.9) 
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and 

( ) 











+
∆ 2

2
2

1 n

n
n

D
DWE  

 [ ] ( ).22
10

22 hOWDhDWH nnnn =∆+∆≤ E  (3.10) 

Inserting (3.9) and (3.10) into (3.8) yields 

 ( ( ) ) ( ).1 22 hohDW nn +=+∆ −E  (3.11) 

Similarly, we have 

(( ) )
( )

( )21
2

2
2 1

11
211 hO

D
D

D
DD

n

n
n

n
n +=













+
+

+
−=+ − EE  (3.12) 

and 

 (( ) ) ( ).1111 211 hOD
DD

n
n

n +=





+
−=+ − EE  (3.13) 

Inserting (3.11), (3.12), (3.13) into (3.6) yields 

( )nWhR ∆βββααα ,,,,,,, 321321  

( 1323121
22

3
2
2

2
1 22221 α+τββ+τββ+ββ+τβ+β+β+=  

) ( ).22 32 hoh +τα+α+  

For all sufficiently small stepsizes h, we obtain 

( ) 1,,,,,,, 321321 <∆βββααα nWhR  

( ) .02
321321 <τβ+β+β+τα+α+α⇔  

The proof is completed. 

4. Mean-square Stability of the Weak Balanced Implicit Methods 

In this section, we will investigate the mean-square stabilities of the 
weak balanced implicit methods equipped with two-point random variables 
for the driving process. 
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Given a stepsize ,0>h  the weak balanced implicit methods are defined 

by 

( ) [( )

( ) ]
( )

1
1 1 2 3

1 2 3

ˆ1

, 0,
, , 1, ..., 0,

n n n n n m n

n n m n n

n

Y Y D Y Y Y h

Y Y Y W n
Y nh n m m

−
+ −

−

 = + + α + α + α
 + β + β + β ∆ ≥
 = ϕ = − − +

 

 (4.1) 

where ( ) ( )0 1ˆ , 1 2.n n n n n nD D h D W W h W h= + ∆ ∆ = = ∆ = − =P P  

It is not difficult to find that 

 ( ) ( )
2

0, .nnW W h∆ = ∆ =P E  (4.2) 

The following theorem will show that the weak balanced implicit 
methods (4.1) can preserve the mean-square stability of the system (1.1). 

Theorem 4.1. Under the condition (3.1), for the sufficiently small 
stepsize h, the weak balanced implicit methods (4.1) are mean-square stable 
for the linear system (1.1). 

Proof. Similarly to the proof of Theorem 3.1, we have 

2
1nY +E  

( ) ( )2 22 2
1 2 3ˆ1n n n n m nY h D Y Y Y−

−= + − α + α + αE E  

( ) ( )( )1
1 2 3 1 2 3ˆ2 1 n n n n m n n n m nh D W Y Y Y Y Y Y−

− −+ + ∆ α + α + α β + β + βE  

( ) ( )
22 2

1 2 3ˆ1 nn n n m nD W Y Y Y−
−+ + ∆ β + β + βE  

( ) ( )1
1 2 3ˆ2 1n n n n m nh Y D Y Y Y−

−+ + α + α + αE E  

( ) ( )1
1 2 3ˆ2 1 .n n n n n m nY D W Y Y Y−

−+ + ∆ β + β + βE  (4.3) 
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Since ( ) ( ) 1 2,n nW h W h∆ = = ∆ = − =P P  we find that 

( ( ) )1ˆ1n nW D −∆ +E  

( ( ) ) ( ( ) )1 1
0 1 0 1

1 11 1 02 2n n n nh D h D h h D h D h− −= + + + − + + =  

 (4.4) 

and similarly 

 ( ( ) )2ˆ1 0.n nW D −∆ + =E  (4.5) 

By (4.4), (4.5), thus (4.3) becomes 

2
1nY +E  

[ ( ) ( ) ( )
22 22 2 2 2 2

1 2 3 ˆ ˆ1 3 3 3 1 1 nn nh D D W− −≤ + α + α + α τ + + + ∆E E  

( )τββ+τββ+ββ+τβ+β+β⋅ 323121
22

3
2
2

2
1 222  

( ) ( ) ] 21
321 maxˆ1222 inimnn YDh EE ≤≤−

− ⋅+τα+α+α+  

( ) 2
1 2 3 1 2 3, , , , , , , max .n n m i n iR h W Y− ≤ ≤= α α α β β β ∆ E  (4.6) 

Here 

( )1 2 3 1 2 3, , , , , , , nR h Wα α α β β β ∆  

( ) ( ) ( )
22 22 2 2 2 2

1 2 3
ˆ ˆ1 3 3 3 1 1 nn nh D D W− −= + α + α + α τ + + + ∆E E  

( )τββ+τββ+ββ+τβ+β+β⋅ 323121
22

3
2
2

2
1 222  

( ) ( ) .ˆ1222 1
321

−+τα+α+α+ nDh E  (4.7) 

We observe that 

( ( ) )
2 2ˆ1n nW D −∆ +E  

( ( ) )
2 2

0 11n n n nW D h D W −= ∆ + + ∆E  

( ) .1 2
10

−++= nDhDh nn  
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There must exist { ( ) }1,1minˆ 2
1

2
0 DDh +=∗  such that for any 

( ) .1,ˆ,0 10 <+∈ ∗ nDhDhh nn  By Taylor expansion, 

( ) ( ).211 1
2

10 hohDhDhD nnn +−=++ −  

Hence, we obtain 

( ( ) ) ( ( )) ( )
2 2

1ˆ1 1 2 .n n nW D h D h o h h o h−∆ + = − + = +E  (4.8) 

Similarly to (4.8), we find that 

( ) ( ) ( ).1ˆ1ˆ1 21 hODD nn +=+=+ −− EE  (4.9) 

Substituting (4.8), (4.9) into (4.7) yields 

( )1 2 3 1 2 3, , , , , , , nR h Wα α α β β β ∆  

( 1323121
22

3
2
2

2
1 22221 α+τββ+τββ+ββ+τβ+β+β+=  

) ( ).22 32 hoh +τα+α+  

For all sufficiently small stepsizes h, we find that 

( )1 2 3 1 2 3, , , , , , , 1nR h Wα α α β β β ∆ <  

( ) .02
321321 <τβ+β+β+τα+α+α⇔  

The proof is completed. 

Theorem 3.1 and Theorem 4.1 show that strong balanced methods (2.1) 
and weak balanced methods (4.1) can well reproduce the mean-square 
stability of the system (1.1) for sufficiently small stepsize. 

5. Numerical Experiments 

In this section, several numerical examples are given to illustrate our 
theoretical results in the previous sections. Consider the scalar linear 
equation 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) [ ]













τ−∈=

>





 β+τ−β+β+







 α+τ−α+α=

∫
∫

τ−

τ−

.0,,1

,0,321

321

ttx

ttdWdssxtxtx

dtdssxtxtxtdx

t

t

t

t

 (5.1) 

Denoting i
nY  as the numerical approximation to ( )n

i tx  at step point nt  

in ith simulation of all 2000=K  simulations. We use ∑ =
K
i

i
nYK 1

21  to 

approximate .2
nYE  For simply, we choose ( )....,1,01;1 10 === jDD jj  

All the graphs are drawn with the vertical axis scaled logarithmically. 

We illustrate the mean-square stability of the strong balanced methods 
(2.1) via the two following examples: 

Example 1. .1,5.0,1,5.0,5.0;6;11 321321 =τ=β=β=β=α=α−=α  

Example 2. .1,1,5.0,1,1;4;13 321321 =τ=β=β=β=α=α−=α  

To verify our result concerning mean-square stability for the balanced 
implicit methods, we illustrate it in Example 1 and Example 2. The values of 
the coefficients in Examples 1 and 2 satisfy the condition in Lemma 3.1, thus 
the system (1.1) is mean-square stable. 

For the linear test equation (5.1), the balanced method obviously reduces 
to the drift-implicit method in the case ,01 =C  00 ≠C  and to the explicit 

method in the case .010 == CC  As ,01 ≠C  due to the presence of 

balanced factor ,1 nWC ∆  the balanced method shows implicitness in the 

diffusion term, which has a potential to ensure good stability property. Thus, 
the effect of the balanced factor for the stability of the numerical method will 
be mainly analyzed in the following. More precisely, we investigate the 
variety of the stability through the numerical experiments with 00 =C  or 

10 =C  and only varying { }.1,01 ∈C  The parameter pair ( )10, CC  is chosen 

as follows: 
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(1) ;0,0 10 == CC  

(2) ;1,0 10 == CC  

(3) ;0,1 10 == CC  

(4) .1,1 10 == CC  

In Figures 1, 2, the black broken lines and the red star lines represent the 
solutions produced by the balanced method with ( ) ( )0,0, 10 =CC  and the 

balanced method with ( ) ( ),1,0, 10 =CC  respectively. And the green solid 

lines and the blue solid lines represent the solutions produced by the 
balanced method with ( ) ( )0,1, 10 =CC  and the balanced method with 

( ) ( ),1,1, 10 =CC  respectively. 

Applying the above four kinds of strong numerical methods to Example 
1, we plot the numerical solutions of Example 1 in Figure 1. From Figure 1, 
one can easily observe that all the four numerical simulations are stable for 

small stepsize .20
1=h  But when the stepsize h increases, different methods 

exhibit different behaviors. For example, the explicit method with ( ) =10, CC  

( )0,0  is not mean-square stable on .8
1=h  However, with 00 =C  fixed 

and varying the parameter ,1C  the numerical method with ( ) ( )1,0, 10 =CC  

is mean-square stable on .8
1=h  For drift-implicit variant of the Euler-

scheme, i.e., ,10 =C  ,01 =C  one can ensure good approximations in the 

first two pictures in Figure 1, where stepsizes 6
1,7

1=h  were used. 

Unfortunately, such drift-implicit method becomes unstable as larger 

stepsizes 6
1,7

1=h  were involved. Varying the parameter 1C  and leaving 

0C  unchanged, we obtain the balanced method with ( ) ( ),1,1, 10 =CC  which 

successfully reproduces the mean-square stability of the test problem, even 

for large stepsizes .6
1,7

1=h  



Hu Lin, Wu Qiang, Zhang Zujin and Xu Qingcui 116 

The above numerical results indicate that, with 0C  fixed the balanced 

method with 01 ≠C  ensures better stability behavior than the method      

with .01 =C  Below we try to explain such observation by the maximum 

allowable stepsizes of these numerical methods. In fact, we can obtain an 
estimate of the supremum of the stepsize h in (3.6) for the strong balanced 
methods (2.1). Noticing that ξ  is a standard normal random variable and 

considering the convergence of the series in (3.7), we can compute (3.6) 
approximately as follows: 

( )nWhR ∆βββααα ,,,,,,, 321321  

( ) ( ) ( ) 22222
3

2
2

2
1

2 113331 nnn WDDh ∆+++τα+α+α+= −− EE  

( )τββ+τββ+ββ+τβ+β+β⋅ 323121
22

3
2
2

2
1 222  

( ) ( ) 1
321 1222 −+τα+α+α+ nDh E  

( ) ( )∫−
−−

++
π

⋅τα+α+α+≈
10

10
2

10222
3

2
2

2
1

2 1
2
13331

2

dxxhDhDeh nn

x
 

( )τββ+τββ+ββ+τβ+β+β+ 323121
22

3
2
2

2
1 222  

( )∫−
−−

++
π

⋅
10

10
2

10
22 1

2

2

dxxhDhDxeh
nn

x
 

( ) ( )∫−
−−

++
π

τα+α+α+
10

10
2

102321 1
2
1222

2

dxxhDhDeh nn

x
 

( ).1 hf+=  (5.2) 



Numerical Analysis for Stochastic Delay Integro-differential … 117 

 

Figure 1. Stability behavior of strong balanced methods for Example 2: 

upper ;20
1: =hleft  upper ;8

1: =hright  lower ;7
1: =hleft  lower 

.6
1: =hright  
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Figure 2. Stability behavior of weak balanced methods for Example 2:     

upper ;30
1: =hleft  upper ;16

1: =hright  lower ;5
1: =hleft  lower 

.4
1: =hright  

Our aim is to find the supremum Bh  such that ( ) 0<hf  for .Bhh <  

Applying the composite trapezoidal rule, we can approximate the three 
integrals of ( ),hf  where the integral interval [ ]10,10−  is divided into 200 

equal subintervals. It is obvious that ( )hf  is a nonlinear function with 

respect to h. We use Newton-Raphson method to solve the nonlinear 
equation ( ) 0=hf  and obtain its zero root h such that ( ) ,0<hf  

.0 Bhh <<  
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Table 1. Upper bound Bh  for stability of the four kinds of strong balanced 

methods for Example 1 

 00 =C 10 =C

01 =C 0.0106 0.0108

11 =C 0.0135 0.0137

Consequently, the stepsize’s supremum Bh  can be derived for these          

four kinds of strong balanced methods and they are presented in Table 1            
for Example 1. For Example 1, we have 0106.0=Bh  in the case 

( ) ( ),1,0, 10 =CC  while 0135.0=Bh  for ( ) ( ).1,0, 10 =CC  Fixing 10 =C  

and varying 1C  from 01 =C  to ,11 =C  we get the corresponding stepsize’s 

supremum Bh  increasing from 0108.0=Bh  to .0137.0=Bh  

The numerical results in Figure 1 and the analysis of the stepsize’s 
supremum show that, both the numerical results in Figure 1 and the analysis 
of the stepsize’s supremum show that, to preserve stability the strong 
balanced methods with 01 ≠C  allow for larger range of the stepsize than the 

strong balanced methods with .01 =C  

Now let us begin stability tests for the weak numerical methods. 
Similarly to the strong numerical schemes, we can obtain an estimate of the 

maximum allowable stepsizes Bĥ  in (4.7) for the weak numerical methods. 

Owing to the properties of ξ̂  is a two-point random variable random variable, 

we can rewrite (4.7) as 

( )1 2 3 1 2 3, , , , , , , nR h Wα α α β β β ∆  

( ) ( ) ( )
22 22 2 2 2 2

1 2 3
ˆ ˆ1 3 3 3 1 1 nn nh D D W− −= + α + α + α τ + + + ∆E E  

( )τββ+τββ+ββ+τβ+β+β⋅ 323121
22

3
2
2

2
1 222  
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( ) ( ) 1
321 ˆ1222 −+τα+α+α+ nDh E  

( ).ˆ1 hf+=  (5.3) 

Table 2. Upper bound Bĥ  for stability of the four kinds of weak balanced 

methods for Example 2 

 00 =C 10 =C

01 =C 0.0337 0.0357

11 =C 0.0456 0.0486

It is obvious that ( )hf̂  is a nonlinear function with respect to h. Using 

Newton-Raphson method, we solve the nonlinear equation ( ) 0ˆ =hf  and 

obtain its zero root Bĥ  such that ( ) 0ˆ <hf  as .ˆ
Bhh <  In this way, we can 

obtain the stepsize’s supremum Bĥ  of the weak balanced methods with four 

different parameter pairs, which are listed in Table 2. Similarly to the strong 

balanced methods, with 00 =C  fixed, the maximum allowable stepsize Bĥ  

increases from 0337.0ˆ =Bh  to 0456.0ˆ =Bh  as the method parameter 1C  

varies from 01 =C  to .11 =C  Fixing 10 =C  and varying 1C  from 01 =C  

to ,11 =C  we get the corresponding stepsize’s supremum Bĥ  increasing from 

0357.0ˆ =Bh  to .0486.0ˆ =Bh  

Applying the above numerical methods with four different parameter 
pairs to Example 2, we plot the numerical solutions of Example 2 in Figure 
2. In Figure 2, we focus on the case when 00 =C  is fixed. For this case, 

01 =C  is enough to guarantee stability on ,30
1=h  but fails to preserve 

stability on larger stepsize .16
1=h  On the contrary, 11 =C  detects its good 

performances for both stepsizes. From Figure 2, one can observe a similar 
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effect brought by increasing the parameter 01 =C  to .11 =C  Again, the 

weak balanced methods with 01 ≠C  possess better stability properties and 

have less restriction on the stepsize than the methods with .01 =C  

From the above, the balanced implicit methods admit better stable 
properties than the Euler-Maruyama method with the same stepsize. Overall, 
they are consistent with the established results. 

6. Conclusion 

In this work, we have examined the convergence and the mean-square 
stability of the balanced methods for the stochastic delay integro-differential 
equations. It is shown that the strong balanced implicit methods give strong 
convergence rate of at least .21  The forgoing results show that both the 

strong balanced methods and weak balanced methods can reproduce the 
mean-square stability of the system with sufficiently small stepsize h. The 
theory result and the numerical experiment show that balanced methods 
which have the implicit diffusion term are indeed the superior schemes for 
relatively large stepsizes and admit better stability property than the balanced 
methods which have the explicit diffusion term, for example, the Euler 
scheme method. 
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