B - International Journal of Numerical Methods and Applications
,  © 2016 Pushpa Publishing House, Allahabad, India
- ) Published Online: September 2016
B __ http://dx.doi.org/10.17654/NM 015020093
Volume 15, Number 2, 2016, Pages 93-123 I SSN: 0975-0452

NUMERICAL ANALYSISFOR STOCHASTIC DELAY
INTEGRO-DIFFERENTIAL EQUATIONS

Hu Lin, Wu Qiang®, Zhang Zujin and Xu Qingcui

Jiangxi University of Science and Technology
Ganzhou, Jiangxi 341000, P. R. China

Jiangxi Environmental Engineering Vocational College

Ganzhou, Jiangxi 341000, P. R. China

e-mail: littleleave05@163.com
wugiang0922@126.com

Gannan Normal University
Ganzhou, Jiangxi 341000
P. R. China

Jiangxi University of Science and Technology
Nanchang Campus
Nanchang, Jiangxi 360000, P. R. China

Abstract

This paper deals with a family of balanced methods which own the
implicit iterative scheme in the diffusion term for the stochastic delay
integro-differential equations. It is shown that the balanced implicit
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methods, which are fully implicit methods, give strong convergence
rate of at least 1/2 and that the strong balanced methods can preserve
the linear mean-square stability with the sufficiently small stepsize.
Weak variants are also considered and their mean-square stability is
analyzed. Some numerical experiments are given to demonstrate the
conclusions and to show that the fully implicit methods are superior to
those of the explicit methods in terms of mean-square stabilities.

1. Introduction

Stochastic delay integro-differential equations (SDIDEs) are often used
to model some problems in a variety of application areas including
population dynamics [1], engineering, physics [2], economy [3, 4] and so on.
Unfortunately, stochastic delay differential equations rarely have explicit
solutions. Thus, appropriate numerical methods are needed to apply in

practice and to study their properties.

The numerical analysis of stochastic delay differential equations
(SDDEs) is well studied, for instance, Baker and Buckwar [5, 6], Kiichler
and Platen [7], Mao and Sabanis [8], Liu et al. [9], Wang et al. [10], Cao and
Zhang [11], Wu and Ding [12], Zhao et al. [13] and Zhang et al. [14, 15]. As
for SDIDEs, there has been much less research of numerical schemes. Mao
[17] discussed the stability of SDIDEs. Ding et al. [16] discussed the
convergence and stability of the semi-implicit Euler method for SDIDEs. Tan
and Wang [18] considered the convergence and mean-square stability of the
split-step backward Euler (SSBE) method for SDIDEs. Li and Gan [19]
investigated the mean-square exponential stability of stochastic theta
methods for nonlinear SDIDEs.

However, it is already known that the majority of these discrete
approximations for SDIDEs are not fully implicit methods, they are only
implicit in the drift coefficient. These drift-implicit methods are well adapted
for stiff systems with small stochastic noise intensity or additive noise. But in
those cases in which the stochastic part plays an essential role in the
dynamics, e.g., as it is with large multiplicative noise, the application of fully
implicit methods also involving implicit stochastic terms is unavoidable. One
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of the most important fully implicit methods is the balanced implicit
methods, which were firstly introduced by Milstein et al. [21] and used to
solve stiff systems. Some recent papers which consider the balanced implicit
methods for the stochastic differential equations include [20, 22-24].

Consider the following scalar linear stochastic delay integro-differential
equation:
t
dx(t) = (oclx(t) +ogx(f — 1)+ a3I x(s)dsj dt
t-1
t
+ [le(t) + Byx(t — 1) + By j x(s)dsde(t), £>0, (L)
-t

X(t) = (P(t)’ t e [—T, 0],

where a;, 3, e R(i=12,3), t is a positive fixed delay, o) is a
C([-7, 0]; R), W(t) is a scalar Brownian motion, both defined on an
appropriate complete probability space (Q, F, {F;},5,, P), with a filtration
{]:t}tzo satisfying the usual conditions (i.e., it is increasing and right-

continuous while () contains all [P -null sets).

Lemma 1.1. For any given T > 0, there exist positive numbers m; and

Ny such that the solution x(t) of (1.1) satisfies

E( sup |x(s)?) <[l +E| o] (1.2)
—1<s<t
forall t € [-1, T],
E| x(t) - x(s) |* < ma(t — 5), (13)

forany 0<s<t<T,t—s5<1.

For the proof of inequality (1.2), we refer to [25, Chapter 3, Theorem
5.1]. Further, inequality (1.3) can be obtained from (1.2).
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Regarding numerical analysis of (1.1), Hu and Huang [26] investigated
the mean-square stability of stochastic-methods for SDIDEs (1.1). However,
to the best of our knowledge, there are no stability results of implicit methods
for the system (1.1). In this paper, the balanced implicit methods are
proposed for SDIDEs (1.1). Our aim is to investigate the strong mean-square
convergence and mean-square stability of the balanced implicit methods of
the system (1.1). The rest of the paper is organized as follows. In the
subsequent section, Theorem 2.1 is established to showing the strong

balanced implicit methods are convergent with strong order 1/2. Section 3

and Section 4 deal with linear mean-square stability of the strong balanced
implicit methods and the weak balanced implicit methods. In Section 5, some
numerical experiments are given to demonstrate the conclusions. Finally,

conclusion is made in Section 6.
2. Convergence of the Balanced Implicit Methods

Given a stepsize & = t/m > 0, a version of strong balanced methods for

(1.1) is given by

Yoo =Y, + (o, + oY,y + a3h)) i
+ (BlYn + BZYn—m + BSFn)AWn + Dn(Yn - Yn+1)s n 2z 0, (21)
Y, = o(nh), n=-m-m+1l,..,0,

where Y, is an approximation to x(¢,) with ¢, =nh, AW, =W(t,.1)-W(t,)-

Here Y, denotes

m
Vo= hY Yok 2.2)
k=1

Here D, is given by
D, = DOn(Yn’ Yy —m> Yn)h + Dln(Yn’ Yy—m> Yn)l AW, |

= Donh + D1n| AWn |, (23)
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where Dy, = Do, (Yy> Yyems ¥y)s  Diy = D1y(Yys Yyopns ¥,) are called

—m>
control functions. In order to obtain our main results in this paper, we assume

that Dy,,, Dy, in equation (2.3) are constants, that is, Dy, = Dy, Dy, = Dy.
In addition, Dy, D; which are uniformly bounded satisfy the following

condition.

Assumption 1. For any real numbers o € [0, a], o >0, where

a > h for all step sizes h considered, the constants Dy, D; satisfy

|_1SH<oo.

| 1+ (loDO + U“lDl
Therefore, (2.1) can be rewritten as follows:
—1 g
Yo=Y, + (1 + Dn) [(alyn + oY, , + OL3Yn)h
+ (BIYn + BZYn—m + B3)7n)AWn]’ n20. (2.4)

We denote by x(¢,,1) the value of the exact solution of (1.1) at the mesh
point #,,; and by Y, ,; the value of the approximation solution using (2.4).

Furthermore, we denote by Y (z,.;) the value that is obtained when the exact

solution values are inserted into the right-hand side of (2.4), that is,

7(l‘}1+1) = x(tn) + (1 + D(tn ))_1[(a1x(tn) + OL2x(l‘n—m) + 0L337(l‘11 ))h

# (Brety) + Bax(ty_) + B5(t, ) AW, | (3)
Here
D{ty) = Doy (x(ty ) 3(ty ), Tt D+ Diy(x(ty), 30ty ), 706, DA,
= Dy, (t,)h + Dy,(t,) AW, (2.6)
and
#0,) = By, (6t )

k=1
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Based on the definition introduced in [27, 28], we give the following
definitions.

Definition 2.1. The local error of method (2.1) is defined as follows:
8,i1 = x(ty4) = Y(t,1), n=0,1,.., N—1.
The global error of method (2.1) is defined as follows:
g, =x(t,)-Y,, n=0,1,.. N.
Throughout this work, we use Cj, C,, ... to denote generic constants,
independent of /.

Lemma 2.1. There exist positive numbers m3 and my such that the

numerical solution produced by the balanced method (2.1) to approximate

the solution of equation (1.1) satisfies

3
max | E(8,,1)| <nzh? as h — 0, (2.8)
0<n<N-1
1
max  (E(3,,1)?)2 <ngh as h — 0. (2.9)
0<n<N-1

Proof. It follows from (2.5) and Definition 2.1, we get

Bust = [ o (0) = x(6,)) + oo (e = ) = 2ty )

n

+ og(jj_r x(s)ds — X(z, )jdt
=7 B0 = x0) Bt =)= X )

; 33[ [ :_1_ x(s)ds - %(t, ))dW(t)

2 0rnte) + 0230, ) + 055 )

+ (Brx(ty) + Bax(ty—m) + B3¥(2,)) AW, . (2.10)
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Thus, employing mathematical expectation and using the properties of the Itd
integral, we obtain

| E(8n+1) |

In+l In+1
sjt |a1|-E|x(t)—x(t,,)|dt+j Loy |- Bl x(t - 1) = x(t,_,,) |dt

n tn

+ I:Hl los |- E‘ j:_ x(s)ds — X(¢,) |dt
‘ B f %Zt)n y (0xtn) + 0x(ty ) + 03X(1)) ‘ (2.11)

For Vt € [t,, t,41], using (1.2), (1.3) and (2.7) yields

E‘ J:_r x(s)ds - %(t,)

1

< Jnath? + 24 (1 + Bl o |*)h
1
= (Yot + 24 (1 + Bl o|*)) 12, (2.12)

We notice the assumption that the Dy, D; are uniformly bounded, that is

to say, there exists a positive constant B such that | D; | < B(i = 0, 1). Using

Assumption 1, E| AW, | = 1/%, (1.2), (2.6) and (2.7) give

B ) + a2t )+ 0T )

< H(Bh+ BNI)R-[( oy | +] op DY (L+ Bl @ %) + 12| a3 [ mymy (1+ B 0]*)]
3
< 2HB\m (1 + B @ ) (o [ +] oz | +] o3 [0) 2. (2.13)
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Combining (1.3), (2.12), (2.13) with (2.11) yields

|E(8n+1)|
3 3
< (lay [ +] oy Wngh? +] oz [(Wnat+ 2y (1 + B o)) 42
3
+ 2HB\n (1 + E| (p||2) (o |+ ]ay | +]|az]|t)h?

3
= m3h?.

Here

n3 = (o |+ oz Damy +[ oz |(npt+29m (1 + Bl o))
+ 2HB\ (1 + B @ *) (o | +] g [ +] a3 |2).

1
In the following, we will show maxgc,<y_1(E(5,.1)*)2 <n4h.

Squaring and taking expectation on both sides of (2.10) and using the
properties of the Itd integral, we compute that

In+l In+l
B(3,01) < 38[ "Bl G0 Pdr 3] " Bl (0) Par + 3B 63 214)

where

t

60)= 1 (3(0)  x0) 0250 = )= 30 5 [ x6)ds 5,

t_

t

62(0)= P50 1))+ B = =306, ) s [ 561 = 56,) )|

l‘_

D(t,)

G3 (Z) = 1+ D(ln) [(alx(tn) + 0'“2)C(l‘n—m) + O‘3)Nc(tn ))h

+ (le(tn ) + BZx(tn—m) + B3)7(tn ))AWn]'
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It follows from (1.3), we get

Bl (1)
¢ 2
= 5l ()00 o250 5) oy ) [ 35500
< 3(af + a3)noh + 303E J' ;_ x(s)ds — %(z,) ’ (2.15)

2
Using the properties of the Itd integral, the inequality (Z,m_ xij <

my " x7, (1.2),(1.3) and (2.7), we have

2

E I;t x(s)ds — X(t,)

-7

2

t m
=E J.t—r x(s)ds - thzl x(tn—m-t-k)

< 3rmn2h2 +6n(1+E| e ||2)h2

= 3t°mph + 6ny (1 + B o)A, (2.16)
Combining (2.16) with (2.15) yields
Bl ¢(1)[* < 3(af + o3)noh + 3a3[3rnh + 6ny(1 + B ¢ |*) %]
= Cyh. 2.17)
By (1.3) and (2.16), we see that

E| ¢y(r) [

‘ 2

= B B((0) = 30,) + Ba(a(r = 0= (i) B[ (51 =)

t_



102 Hu Lin, Wu Qiang, Zhang Zujin and Xu Qingcui
2 2 211,.2 2y12
< 3Bimah + 3ok + 3B3[3tmph + ony (1 + Ef ¢ [|7)A7]

= C,h.

(2.18)

Using Assumption 1, | D; | < B, E|AW, |2 = h, E|AW, |4 = 3h2, (1.2) and

(2.7) yield
Bl ¢3(1)[?

_ ol D)
|1+ D(t,,)

2
+ (Byx(t),) + Box(ty—pm ) + B3X(2,)) AW, ]
< 24H?B*h(af +a3)m(1+ B ¢ |*)
+48H BT (B + B3)mi(1+ B o)
+24H%B*(ho3 + 2B3) A (1 + B o |*)
= C3h°.
Substituting (2.17), (2.18), (2.19) into (2.14) yields
E(3,41)°

t t
< 3h j " Cohdt + 3 j " Cohdt + 3Ch
tn tn

= 3Ch> +3Cyh% +3C3h°
< (3C; +3C, +3C3) k2.
That is to say,

1
maxg<,<n—1(E(8,41)°)2 < ngh as h > 0.

where 14 = +/3C; + 3C, + 3C5. The proof is completed.

[(alx(tn) + OL2x(tn—m) + OLSJ?(Zn ))h

(2.19)
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Now we give the main theorem in this section.

Theorem 2.1. The numerical solution produced by the balanced methods
(2.1) converges to the exact solution of (1.1) on the mesh point in the mean-

. 1 . . .
square sense with strong order 5 Le, there exists a positive constant M5

such that

1 1
maXISnSN(E(Sn )2)2 < T]Shza h — 0.

Proof. By (2.1), we find that

€n+l
= x(tn) - Yn + x(tn+1) - Y(tn-kl) - Yn+1 - x(tn) + Yn + Y(tnﬂ)
=g, + 6n+1 + P, (2.20)

where &, =x(t,) = Y,, 8,41 =x(t,41) - Y(tn-i—l)’ By =Y, + ?(tn+l)_

Y,.1 — x(z,). 1t follows from equation (2.20), we have
2
E(e;41 |]:t0)
< Bl | Fry) + 2E(8541 | Fyy ) + 2B(B; | Fy)
+ 2/ B8y 418 | Fy) | + 2/ Ble, By | Fy ) |- (2.21)

We will now estimate the separate terms in (2.21) individually. Without loss
of generality, we can assume 0 < 4 < 1. From (2.9), we obtain

E(S7+1|Fyy) < BEGp. | F ) Fy ] < Mk, (2.22)
Using (2.4) and (2.5) gives

By =1, + Ytn+1 = Y1 —x(t,)

= [(l + D(tn ))_1 - (l + Dn )_1] [(alx(tn) + 0L2x(l‘n—m) + OL3E(l‘n ))h
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+ (Brx(ty) + Box(ty—p) + B3X (1)) AW, ] + (1 + D, )
Jouh(x(t,) = ) + 0oh(x(ty_m) = Yooy) + 03h(%(t,) = 1)
+ (B(x(t) = Y) + Bo(¥(t—m) = V) + B3(F(t) = ¥,)) AW, 1. (2.23)
It follows equations (2.3) and (2.6), we get
[1+D@,) " -1+ D,T"
= [1+ D(t,)] (Do = Do)+ (Dyy, = Dy(t )| AW, []-[1+ D, 7. (2.24)
Using Assumption 1, E| AW, | = \/% | D;| < B, (1.2), (2.2), (2.7) and

(2.24) yield

| E(F,)|

3
< 4H?BR2[| oy |+ ]| oy | + | oz |tV m( + B @[*)

m
+ Hlay KB 5, | + Hl o [WE| 5, |+ H] 03 |23 B, i

3
>y m
+ C4h2 + CshE| €, | + CehB| €,_p | + C7hzzk:1 E| &y msk |- (225

By (2.23),

EP?

< 2E[(1 + D(tn ))_1 - (1 + Dn )_1]2[((11)6(1‘,1) + 0LZX(l‘n—m) + oLl’:)?(tn ))h
+ (le(tn ) + BZx(tn—m) + [33)70}1 ))AWn ]2 + 2E(1 + Dn )_2

’ [alh(x(tn) - Yn) + 0'*2}1()C(t}1—m) - Yn—m) + Oc3h()7(tn) - Yn)

+ (Bl(x(tn) - Yn) + B2(x(tn—m) - Yn—m) + [33(%(%) - Z/L))AWn]z (2-26)
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Using Assumption 1, | D; | < B, B| AW, |* = h, B| AW, |* = 342, (1.2),
(2.7) and (2.24) give

B[(1+ D(¢,))”" = (14 D)~ Plloye(t,) + 00x(t, ) + 03% (1))
+ (Brx(t) + Box(ty—m) + B3X(t, ) AW, I
< 12H*B*[20f + B} + 37 + 203 + B3 +3p3Im (1 + E| ¢ )1
+ 12H*B* 205 + B3 + 3p3]c"mi (1 + Bl o [*)A°
= Cgh?. (2.27)
Using Assumption 1, (2.2) and (2.7), yield
B+ D) - [oyh(x(t,) = ¥,) + 02h(x(ty ) = Y pn)
+ azh(x(ty) = ¥,) + (By (x(2,) = ¥) + Bo(x(tg) = Vi)
+ B3 (F(ty) - V) AW, T
< H*6(a? + B3 )hEe2 + 6H* (03 + P3) hEe2_,,

20,2 2\ 2\ 2
+6H (O~3 + B3)Th Zk:l ey —m+k

= Cohle2 + CjghEe>_,, + C 1h2ZZ’ZIEgﬁ_m+k. (2.28)
Inserting (2.27), (2.28) into (2.26) yields
EP? < 2Cgh® + 2CohEe? + 2C)ghEe2_,, + 2c11hzZZ:1 Ee2 , . r. (2.29)
It is not difficult to find that

E(P; | Fy) < 2Csh® + 2CohB(ey, | Fy ) + 2C10hE(en_y, | Fy )

2\ 2
F20007 Y Blen mek | Fyy) (2.30)
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It follows (2.8) that
2 ESy118n | F1y) |
1 1
< 2[E(E(8 1 |]:tn ))2 |]:t0 ]E[E(S% |-7:t0 )12
< n3h* + hE(ep | 7). (2.31)

By (2.25),
2| E(SnPn |Ft0) |

3
2 ) m
< 2E[{C4h28n + C5h| €n | + C6h| €n ” €n—m |+ C7h22k:1| En—m+k ” €n |J-7:t0]

= Cih* + (1+2Cs + Cg + Cyu)hE(ep | Fy ) + CohE(en_p | )

2 m 2
+ Oty Blen ek | Fy): (2.32)
Combining (2.22), (2.30), (2.31), (2.32) with (2.21) yields

2

E(en-117,)

< B(e, | Fyy) + 2n3h° + 4Cgh®
2 2
+ 4CohE(ep | Fyy ) + AC1ohE(en_ | Fy )
2 m 2 2,2 2
HACITY T Blen ek | Fyy) + m3h° + HB(ey | Fy))
+ C3h* + (1+2Cs + Cg + Cyr)hB(ep | Fyy ) + CohBlen_p | Fyy)
2 m 2
+ C6h Zk:l IE’(Sn—m+k |-7:t0)
2 2 2

= Cioh” + (1+ Ci3h)E(e;, | Fy) ) + Crahli(es, o | )

m
+Csh* Y Blen ek | Fy): (233)
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Letting G, = maxg<;<, E(c? | Fio)(n=0,1,..), it is not difficult to

find Ry = 0, hence (2.33) becomes
Gn+1 < C12h2 + (1 + C13h)Rn + C14hRn + C15h2mGn

1 A all '
< (1 + C16h)n+ G() + C12h Zj:O (1 + C16h)J
< @(ecléT ~1)h. (2.34)
Cis

(2.34) leads to the estimate

1 1

max (E(g,)?)2 <nsh2, h—0,
0<n<N

where 15 = %(eCwT -1).
16

Theorem 2.1 shows that the balanced methods have strong convergence

rate of at least 1/2. Having established the acceptable finite time convergence

of the balanced methods, in the next section, we consider long-time stability.
3. Mean-square Stability of Strong Balanced Methods
We investigate the mean-square stability of the strong balanced methods

in this section.

Since the system (1.1) has no explicit solution. The following lemma
gives the sufficient condition on the stability for the analytic solution of the

system (1.1).
Lemma 3.1 [26]. Assume that o;, B;, i =1, 2, 3 satisfy
2
ap +]og [ +]ast+ (B [+[Ba|+]B3]1)” <O. (3.1)
Then the solution of (1.1) is asymptotically stable in the mean-square, that is,

lim, ., E(x(z,))* = 0.
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Given parameters o;, 3;, i = 1, 2, 3 and stepsize h, we say the balanced

implicit methods are mean-square stable if lim,,_, ., B(Y, )2 =0 for any Y.

The following theorem will show the mean-square stability of the balanced

implicit methods.

Theorem 3.1. Under the condition (3.1) and Assumption 1, for the
sufficiently small stepsize h, the balanced implicit methods (2.1) are mean-

square stable for the linear system (1.1).

Proof. Squaring and taking expectation on both sides of (2.4) yields
EYn2+1

= EY? + h’E(1+ D,) 2 (oY, + an¥,_,, + osY,)
+ 2HE(1 + D, ) AW, (Y, + 0¥,y + 437, (BY,, + BoYo— + B3Y,)
+E(L+ D, ) AW (BiY, + BoYyop + B3Y, )
+ 2hEY,E(1 + D,) ayY, + anY,_,, + asY,)

+ 2BY,(1+ D,) AW, (B1Y, + BoYy_m + B3T))- (3.2)

Letting & be independent standard normal random variable, we know that

E(AW,(1+ D,)™")

X
400 ——
- \/_“2}’.[ ¢ 2 x(1+ Dyyh + DyyNh| x| dx = 0. (3.3)
T J -0

Similarly

E(AW,(1+ D,)?)

2
I X
400 -
- Zh J e 2 x(l + Do,h + Dy~ hl X |)_2dx = 0. 3.4
V21 J -0
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By (3.3), (3.4), thus (3.2) becomes
EYZ2, <[1+h*Ba? + 303 +303t?)E(1 + D,) 2 + E(1+ D,) 2 AW}?
(BT + B3 +B3t” + 2/ BiBy | + 2 BiBs 7+ 2| BoBs 1)
+ (20 + 2f og [+ 2[ o3 [T)B(1 + Dn)_l] “Max,_,<i<p B Y; |2
= R(oy, o3, 03, By, Bo, B3, by AW, ) max,_pcic, B Y . (3.5)
Here
R(oy, ap, a3, By, Bas B3, A, AW,)
=1+ h*Ba? + 303 +3031°)E(1 + D,) > + E(1+ D,) 2 AW
(BT + B3 + B3t + 2/ BiBa | + 2 BiBs [ + 2 BoBs |7)
+ (204 + 2 ay |+ 2| a3 |)E(1 + D,) . (3.6)
From this, we see that lim,, ., E(Y,)* = 0 if and only if
R(o, B, M, h, AW,) < 1. (3.7)
It is not difficult to find that

E(AW2(1+ D,)?)

— - 2E A2 —Pn +EAW2D—’% (3.8)
B }’ll_,’_Dn n(1+Dn)2 ' :

Using Assumption 1 and properties of AW,,, D,, gives

D
‘ —2E[AW,,2 ﬁ}
n

= 2HE[AWn2| Do,h + D1n| AW, | |]

= 0(h¥?) (3.9)
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and

2
E{A w? Lz}
(1+D,)

< HB[AW,7| Do,h + Dy,| AW, | F] = O(h?).

Inserting (3.9) and (3.10) into (3.8) yields
E(AW2(1+ D,) %) = h + o(h).

Similarly, we have

2
E((1+ D,)2) = E{l - liDgn i +D£ )2} —1+0(1"?)
and
E(1+D,) ") = E[l— 1 f'bn} =1+ 0(n"?).

Inserting (3.11), (3.12), (3.13) into (3.6) yields

R(ay, ay, o3, By, Ba, B3, 7, AW,)

= 1+ (B? + B3 + B3> + 2/ BiBa | + 2 BiB3 |t + 2| BoBs | + 20

+ 2 ay | +2 oy )k + o(h).
For all sufficiently small stepsizes 4, we obtain
R(O(.l, Ay, A3, Bla BZ& B3, ha AWn) <1
o ar+aa|+las |+ (Bl +Ba] +|Bs 1) < 0.

The proof is completed.

(3.10)

(3.11)

(3.12)

(3.13)

4. Mean-square Stability of the Weak Balanced Implicit Methods

In this section, we will investigate the mean-square stabilities of the

weak balanced implicit methods equipped with two-point random variables

for the driving process.
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Given a stepsize & > 0, the weak balanced implicit methods are defined

by
A 5
Yog=Y,+ (1 + Dn) [(alyn +onY,_, + 0L3Yn)h
+ (BlYn + BZYn—m + B3Yn)AWn], n =0,
Y, = ¢(nh), n=-m-m+1,..,0,

(4.1)
where D, = Dy,h + Dy, AW, |,P(A/V7n =Jh) = P(AW, = —~J/h) =1/2.
It is not difficult to find that
P(AW,) = 0, E(AW3) = h. (4.2)

The following theorem will show that the weak balanced implicit

methods (4.1) can preserve the mean-square stability of the system (1.1).

Theorem 4.1. Under the condition (3.1), for the sufficiently small
stepsize h, the weak balanced implicit methods (4.1) are mean-square stable

for the linear system (1.1).

Proof. Similarly to the proof of Theorem 3.1, we have
EYn2+1
= BY? + ’B(1 - D,) 2 (oqY,, + a¥,_,, + 0o37,)?
+ 2HB(1+ D, ) AW, (04X, + 0¥,y + 3T, ) (BrY, + BaYoe s +B3T,)
+B(1+D,)7 A (B, +BaYy o +BsT, )
+2hBY,B(1+ D,) (oY, + ayY,_,, +as¥,)

+ ZEYn (1 + [)n )_1 AVVn (BIYn + BZYn—m + 53?}1) (4~3)
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Since P(AW, =/h) = P(AW, = —h) = 1/2, we find that
(AW, (1+ D))
= 21+ Do+ DY) + 2 (- (1 Dy Dy Y = 0
(4.4)
and similarly
E(AW,(1+D,) %) = 0. (4.5)
By (4.4), (4.5), thus (4.3) becomes
2
IE‘Yn-i—l
. Ny =2
<[1+h?(3af + 303 +3031°)E(1+ D,) > + E(1+ D,) 2 AW,
2 a2, a2.2
(BT + B2 + B3t + 2 BiBa | + 2/ BiBs |t + 2| BB [ 1)
+ h(ZOLl + 2| 5] | + 2| a3 |T)E(1 + bn)_l] s MaAXy, _m<i<n El Y; |2
A 2
= R(oy, 0y, 03, By, Bas B3, b, AW, )max,, <<, Bl Y |7 (4.6)
Here
R((X,l, ay, O3, [31, Bz, B3, h, AWn)
A A /\2
=1+ h? 3o} +3a3 + 30312 )E(1+ D)2 +E(1+ D,) > AW,
2, a2 2.2
(BT + B2 + B3t + 2| BiBa [+ 2| BiB3 T+ 2[ BaB3 [ 1)
+ h(20y + 2/ ay |+ 2 a3 [0O)E(1+ D, ). (4.7)
We observe that
—2 A
E(AWy(1+ D,)7?)
—2 —
= E(AWn(1+ Dy,h + Dy, | AW, |)7?)

= h(1 + Doph + DyNn) 2.
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There must exist A* = min{l/(| Dy |* +| Dy [*), 1} such that for any
h e (0, i), | Doph + Dy,n | < 1. By Taylor expansion,
(1+ Doph + DyyNh) 2 =1-2D,vh + o(Vh).
Hence, we obtain
E(AWs(1+ D, 2) = h(1= 2Dy, NE +o(NK)) = h+ o(h).  (4.8)
Similarly to (4.8), we find that
E(1+D,) ' =E(1+D,)? =1+0Kh). (4.9)
Substituting (4.8), (4.9) into (4.7) yields
R(ay, 05, 03,8182, B3, . AW,)
= 1+ (Bf +P3 +B3T° + 2 Bipy [ + 2| BiBs [+ 2 BoPs |7 + 20
+2| oy |+ 2oz |t)h + o(h).
For all sufficiently small stepsizes 4, we find that
R(ay, aty, 03By By, By, b AW, ) < 1
& oy +]ay | +]og T+ (B | +]Ba|+]B3|1) <O.
The proof is completed.

Theorem 3.1 and Theorem 4.1 show that strong balanced methods (2.1)
and weak balanced methods (4.1) can well reproduce the mean-square

stability of the system (1.1) for sufficiently small stepsize.
5. Numerical Experiments

In this section, several numerical examples are given to illustrate our
theoretical results in the previous sections. Consider the scalar linear

equation



114 Hu Lin, Wu Qiang, Zhang Zujin and Xu Qingcui
t

dx(t) = (alx(t) +ogx(r — 1) + a3j x(s)dsjdt
t-1

t
t—

+(B1x(t)+[32x(t—1:)+[33.[ Tx(s)dsde(t), (>0, (5.1

x(t) =1, t €[, 0]

Denoting Y,i as the numerical approximation to xi(tn) at step point ¢,

in ith simulation of all K = 2000 simulations. We use %ZfiJ YIP to

approximate E| Y, |2. For simply, we choose Dy; =1; Dy; =1(j =0, 1, ...).
All the graphs are drawn with the vertical axis scaled logarithmically.

We illustrate the mean-square stability of the strong balanced methods

(2.1) via the two following examples:
Example 1. o = -1 1; Ay = 6; a3 = 05, Bl = 05, Bz = 1, B3 = 05, t=1.
Example 2. oy =-13;0, =403 =10, =1,B, =0.5,B3 =L t=1.

To verify our result concerning mean-square stability for the balanced
implicit methods, we illustrate it in Example 1 and Example 2. The values of
the coefficients in Examples 1 and 2 satisfy the condition in Lemma 3.1, thus
the system (1.1) is mean-square stable.

For the linear test equation (5.1), the balanced method obviously reduces
to the drift-implicit method in the case C; =0, Cy#0 and to the explicit
method in the case Cy =C; =0. As C; #0, due to the presence of
balanced factor Cj| AW, |, the balanced method shows implicitness in the

diffusion term, which has a potential to ensure good stability property. Thus,
the effect of the balanced factor for the stability of the numerical method will
be mainly analyzed in the following. More precisely, we investigate the
variety of the stability through the numerical experiments with Cy = 0 or
Cop =1 and only varying C; € {0, 1}. The parameter pair (Cy, C}) is chosen

as follows:
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(1) G =0, =0
2)Cy=0,C =1
() C=10C=0
4 Cy=1¢ =1
In Figures 1, 2, the black broken lines and the red star lines represent the
solutions produced by the balanced method with (Cy, C;) = (0, 0) and the
balanced method with (Cy, Cy) = (0, 1), respectively. And the green solid

lines and the blue solid lines represent the solutions produced by the
balanced method with (Cy, C;) = (1, 0) and the balanced method with

(Co, C1) = (1, 1), respectively.
Applying the above four kinds of strong numerical methods to Example

1, we plot the numerical solutions of Example 1 in Figure 1. From Figure 1,

one can easily observe that all the four numerical simulations are stable for

small stepsize & = % But when the stepsize 4 increases, different methods

exhibit different behaviors. For example, the explicit method with (Cy, C}) =

(0, 0) is not mean-square stable on A = % However, with Cy = 0 fixed

and varying the parameter Cj, the numerical method with (Cy, C;) = (0, 1)
is mean-square stable on 4 = % For drift-implicit variant of the Euler-
scheme, ie., Cy =1, C; =0, one can ensure good approximations in the

. I . 11
first two pictures in Figure 1, where stepsizes #h =5, g were used.

Unfortunately, such drift-implicit method becomes unstable as larger

%, % were involved. Varying the parameter C; and leaving

C, unchanged, we obtain the balanced method with (Cy, C;) = (1, 1), which

stepsizes h =

successfully reproduces the mean-square stability of the test problem, even

1 1

for large stepsizes & = 7
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The above numerical results indicate that, with C, fixed the balanced
method with C; # 0 ensures better stability behavior than the method

with C} = 0. Below we try to explain such observation by the maximum

allowable stepsizes of these numerical methods. In fact, we can obtain an
estimate of the supremum of the stepsize / in (3.6) for the strong balanced

methods (2.1). Noticing that & is a standard normal random variable and

considering the convergence of the series in (3.7), we can compute (3.6)

approximately as follows:
R(ay, ap, a3, By, Ba, B3, A, AW,)

=1+ h*(3of + 305 +3031>)E(1 + D, )2 + E(1 + D,) 2AW;?
(BT + B3 + P37 + 2 BiBy | + 2 BiBs |7+ 2| BoBs 1)

+ (204 + 2|y |+ 2| 05 [D)E(1 + D)

X
~ 1+ h*(30f + 305 + 303t ¢ 2 (1+ Dyyh+ DyNh| x|)2dx

) 1 10
=l
+ (BT + B3 + B3> + 2/ BiBa | + 2/ Bibs T + 2| BaBs | 7)

h
b2

[——
I 10° 2 x2(1 + Dy,h + Dy Nh| x|) 2 dx

1
N27

0 - )
+h(20q + 2/ oy |+ 2/ 03 |1) I 0° 2 (1+ Doph + DyyNh| x )" *dx

=1+ f(h). (5.2)
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Figure 1. Stability behavior of strong balanced methods for Example 2:

upper left : h = %; upper vight : h = %; lower left : h = %; lower
. 1
right : h = G
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Figure 2. Stability behavior of weak balanced methods for Example 2:

upper left . h = %; upper right . h = %; lower left : h = %; lower

right : h = %

Our aim is to find the supremum /g such that f(h) <0 for & < hp.
Applying the composite trapezoidal rule, we can approximate the three
integrals of f(k), where the integral interval [-10, 10] is divided into 200
equal subintervals. It is obvious that f(%#) is a nonlinear function with

respect to 4. We use Newton-Raphson method to solve the nonlinear

equation f(#) =0 and obtain its zero root A such that f(k)<0,
0<h<hg.
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Table 1. Upper bound /p for stability of the four kinds of strong balanced

methods for Example 1

Co=0[Cy=1

C; =0(0.01060.0108

C; =1(0.0135/0.0137

Consequently, the stepsize’s supremum kg can be derived for these
four kinds of strong balanced methods and they are presented in Table 1

for Example 1. For Example 1, we have /g =0.0106 in the case
(Co, C1) = (0, 1), while hg = 0.0135 for (Cy, Cy) = (0, 1). Fixing Cy =1
and varying C; from C; = 0 to €} =1, we get the corresponding stepsize’s
supremum /g increasing from sg = 0.0108 to hg = 0.0137.

The numerical results in Figure 1 and the analysis of the stepsize’s
supremum show that, both the numerical results in Figure 1 and the analysis

of the stepsize’s supremum show that, to preserve stability the strong

balanced methods with C; # 0 allow for larger range of the stepsize than the

strong balanced methods with C; = 0.

Now let us begin stability tests for the weak numerical methods.

Similarly to the strong numerical schemes, we can obtain an estimate of the

maximum allowable stepsizes ];B in (4.7) for the weak numerical methods.

Owing to the properties of % is a two-point random variable random variable,

we can rewrite (4.7) as

R(alaa27a37 Bla BZ: B37h7AWn)
A A —=2
=1+ h? (3af + 303 + 303t E(1+ D,) > + E(1+ D,) > AW,

(BT + B3 + B3T° + 2| BBy | + 2/ BiB3 [T + 2| BoBs |7)
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+ h(20y + 2/ ap | + 2| a3 [O)B(1 + D,) !
=1+ f(h). (5.3)

Table 2. Upper bound };B for stability of the four kinds of weak balanced
methods for Example 2

Co=0[Cy=1

C, =0]0.0337|0.0357

C; =1{0.0456|0.0486

It is obvious that f (h) is a nonlinear function with respect to /. Using
Newton-Raphson method, we solve the nonlinear equation f (h) =0 and
obtain its zero root ];B such that f (h)<0 as h < h};. In this way, we can

obtain the stepsize’s supremum hAB of the weak balanced methods with four
different parameter pairs, which are listed in Table 2. Similarly to the strong
balanced methods, with C; = 0 fixed, the maximum allowable stepsize };B
increases from };B = 0.0337 to };B = 0.0456 as the method parameter C;
varies from C; = 0 to C; = 1. Fixing C; =1 and varying C| from C; =0
to C; = 1, we get the corresponding stepsize’s supremum };B increasing from
hg = 0.0357 to hg = 0.0486.

Applying the above numerical methods with four different parameter

pairs to Example 2, we plot the numerical solutions of Example 2 in Figure

2. In Figure 2, we focus on the case when C, = 0 is fixed. For this case,

C; = 0 is enough to guarantee stability on /4 = 3—10, but fails to preserve

stability on larger stepsize /& = % On the contrary, Cy =1 detects its good

performances for both stepsizes. From Figure 2, one can observe a similar
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effect brought by increasing the parameter C; = 0 to C} = 1. Again, the
weak balanced methods with C; # 0 possess better stability properties and

have less restriction on the stepsize than the methods with C; = 0.

From the above, the balanced implicit methods admit better stable
properties than the Euler-Maruyama method with the same stepsize. Overall,
they are consistent with the established results.

6. Conclusion

In this work, we have examined the convergence and the mean-square
stability of the balanced methods for the stochastic delay integro-differential
equations. It is shown that the strong balanced implicit methods give strong

convergence rate of at least 1/2. The forgoing results show that both the

strong balanced methods and weak balanced methods can reproduce the
mean-square stability of the system with sufficiently small stepsize 4. The
theory result and the numerical experiment show that balanced methods
which have the implicit diffusion term are indeed the superior schemes for
relatively large stepsizes and admit better stability property than the balanced
methods which have the explicit diffusion term, for example, the Euler

scheme method.
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