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Abstract 

This paper discusses about developing generalized linear model 
(GLM) of Gamma-Pareto (G-P) distribution. It is shown that G-P              
is a member of exponential family distribution. Consequently, we           
can develop GLM based on G-P. With ( )( )yy minlog  as response 

variable, the GLM has inverse, identity, and log link functions. 
Dispersion parameter, deviance, and Akaike information criteria (AIC) 
of the model are derived in this paper. We also provide the iterative 
weighted least squares (IWLS) for estimating the model’s parameters. 
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1. Introduction 

Recently, some new distributions were developed. One of them is G-P 
distribution developed by Alzaatreh et al. [1]. Some applications of G-P      
were shown in Alzaatreh et al. [1]. Hanum et al. [5] used G-P to model and 
forecast extreme monthly rainfall. 

The applications of G-P in those two papers used only one variable. 
Meanwhile, the variable may be affected by other variable(s). To explain          
the relationship, we need regression model based on G-P distribution. For 
non-normal response variable, the regression model is usually in the form          
of GLM. This paper discusses the development of GLM based on G-P 
distribution. 

The objectives of this paper are: (1) to show that G-P is the member of 
exponential family as a condition to develop GLM based on G-P distribution, 
(2) to provide some attributes for developing GLM such as mean, variance, 
and dispersion parameters of response variable, (3) to define the link 
functions of GLM G-P, (4) to provide deviance and AIC for assessing the 
goodness of GLM G-P, and (5) to provide parameter estimation of GLM    
G-P. 

2. Gamma-Pareto Distribution as a Member of Exponential Family 

GLM is based on a distribution which belongs to a member of 
exponential family. To develop GLM G-P, we have to show that G-P is a 
member of exponential family distribution. 

Theorem 1. Gamma-Pareto distribution belongs to exponential family 
distribution. 

Proof. According to Alzaatreh et al. [1], the pdf of G-P distribution is 

( )
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with 0,, >θα  and .θ>y  In order to show that G-P belongs to 
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exponential family, the pdf of G-P should be able to be written in exponential 
form. Rewriting equation (1) in exponential form yields 
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Taking α and θ as nuisance parameters, G-P’s pdf can be written as 

( ) ( ) ( ) .loglog1logloglogexp 1
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Equation (2) confirms the pdf exponential family distribution in Dobson [4], 
that is, 

( ) ( ) ( ) ( ) ( ){ }.exp: ydcbyayg +τ+τ=τ  (3) 

In equation (2), ( ) ( ) ( ) ,log,,log 1 α=τ=τ⎟
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3. Mean, Variance and Dispersion Parameters of ⎟
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θ
ylog  in 

G-P Distribution 

Mean, variance and dispersion parameters are important parameters             
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in developing GLM. These parameters are determined based on ( )ya  in 

equation (3). 

Lemma 1. The ⎟
⎠
⎞⎜

⎝
⎛
θ
ylog  in G-P distribution has mean and variance 

equal to ( )( ) α=yaE  and ( )( ) ,2α=yavar  respectively. 

Proof. Dobson [4] noted that for Y which has pdf in the form of equation 

(2), the mean and variance are ( )( ) ( )
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respectively. The first and second derivatives of ( )τb  and ( ),τc  respectively, 

are ( ) ,2−=τ′b  ( ) ,3−−=τ′′b  ( ) 1−α−=τ′c  and ( ) .2−α=τ′′c  So the 

mean and variance of G-P with ( ) ⎟
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⎝
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Lemma 2. The dispersion parameter for GLM-GP is .1
α
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The dispersion parameter is estimated by 
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4. GLM of Gamma-Pareto Distribution 

GLM with link function g is ( ) ,i
T
ii Xg η=β=μ  where ( )( ).ii yaE=μ  
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GLM of certain distribution may have some link functions. The link function 
may be based on the pdf or another property of the distribution. In order to 
obtain the link function from pdf, first we reparameterized the pdf with μ, the 
mean of ( ).ya  The link function is ( )μb  in the form of (3). 

Lemma 3. GLM G-P has inverse, identity and log link functions. 

Proof. Since ( )( ) ,α=μ=yaE  we take α=μ  in order to reform 

( )yg  in μ. Then we obtain 
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Taking ,1
α

=ϕ  pdf G-P becomes 
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Based on (4), we may use link function ⎟
⎠
⎞⎜

⎝
⎛
μ
−1  with the model 

( ) β′=
μ

−=μ Xg 1  or ( )β−′=
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According to McCullagh and Nelder [6], the simple model for inverse link 
function is 

i
i

xbb
x

01 +
=μ  or .1

10 ixbb +=
μ

 

Identity link function is used as the inverse of GLM with inverse link 
function. The GLM with identity link function is ixbb 10 +=μ  (Balajari 

[2]). 

Log link function is used based on the relationship between variance and 

mean of ( ).ya  It is showed that ( )( ) .2φμ=yavar  For each observation,       

the variance is ( )( ) .2
iiyavar φμ=  According to McCullagh and Nelder [6], 

the transformation that can stabilize the variance, when ( ) ,2
iiyvar φμ=  is 

logarithmic. Using ( ),log ii yz =  we obtain ( ) φ=izvar  which is constant. 

GLM G-P with log link function is 

( ) ( ) β′=μ=μ Xg log  or .β′=μ Xe   

5. Deviance and Akaike Information Criteria 

In order to assess the goodness of the model, we need some criteria. The 
criteria are also used to compare some models. For GLM, deviance and AIC 
are usually used. Both are based on the likelihood function of response 
variable. Furthermore, for comparing models, a model with less AIC and/or 
deviance is better. 
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Then for all observations, the log likelihood function is 
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Lemma 4. The deviance and AIC of GLM G-P are 
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Proof. Based on (5), we obtain the log likelihood function of G-P 
( )θμα ,,  for known α and θ is proportional to 
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This log likelihood function achieves its maximum at ⎟
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The deviance is proportional to 2 times of difference between the log 
likelihood of the model and maximum value of log likelihood (McCullagh 
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and Nelder [6]). So the deviance for GLM G-P is 

( )
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛
θ

+α+
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

μ−
μ

⎟
⎠
⎞

⎜
⎝
⎛
θ

−α=μ ∑ ∑
= =

N

i

N

i

i
i

i

i
y

y

yD
1 1

loglog1ˆlogˆ

log
2ˆ,  

∑
= ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛
θ

++
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

μ−
μ

⎟
⎠
⎞

⎜
⎝
⎛
θ

−α=
N

i

i
i

i

i
y

y

1
loglog1ˆlogˆ

log
2  

∑
= ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

μ

⎟
⎠
⎞

⎜
⎝
⎛
θ

−+⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛
θ

+μ−α=
N

i i

i
i

i

y
y

1
ˆ

log
1loglogˆlog2  

∑
= ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

μ

μ−⎟
⎠
⎞⎜

⎝
⎛
θ

+⎟
⎠
⎞⎜

⎝
⎛ μ⎟

⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛
θ

α−=
N

i i

i
i

i
i

y
y

1
.ˆ

ˆlog
ˆloglog2  

AIC takes the form ( ) pyAIC 2log2 +|⋅−=  (Burnham and Anderson [3]). 

Using the proportional of likelihood function in (5), AIC for GLM G-P is 
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6. Parameter Estimation of GLM Gamma-Pareto 

Estimation of parameter jβ  using maximum likelihood is done by first 

determining the derivative of likelihood function with respect to jβ  
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μ∂  depends on the link function of the GLM. So the score for jβ  in 
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The variance of jU  is 
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Since the estimator of jβ  is not in close form, Dobson [4] suggested the 

iterative weighted least squares (IWLS) for estimating .jβ  The IWLS is 

( ) .WzXWXbX TmT =  

Using W and ( )jUvar  for G-P, we obtain the iteration for jβ  as 

( ) ( )∑ ∑= =
−
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⎜
⎝
⎛
θ

=
p
k

N
i

m
ki

i
i

ikijmT byvar

xx
WXbX

1 1
1

2

log
 

∑ = ⎟
⎠
⎞

⎜
⎝
⎛
η∂
μ∂

⎥⎦
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⎢⎣
⎡

⎟
⎠
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⎠
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⎜
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where 

( )∑ =
−

⎟
⎠
⎞⎜

⎝
⎛
η∂
μ∂

⎟
⎠
⎞⎜

⎝
⎛ μ−⎟

⎠
⎞⎜

⎝
⎛
θ

+=
N
i i

i
i
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ybxz
1

1 .log  

7. GLM G-P and GLM Gamma 

Alzaatreh et al. [1] mentioned mathematical relationship between G-P 
and gamma. GLM G-P may also have relationship with GLM gamma. 

Theorem 2. GLM G-P with response variable ⎟
⎠
⎞⎜

⎝
⎛
θ
iylog  is similar to 

GLM gamma with response variable .log ⎟
⎠
⎞⎜

⎝
⎛
θ

= iyu  

Proof. Lemma 1 to Lemma 4 show the similarity.  

8. Conclusions 

Regression modeling based on G-P distribution can be developed in the 
form of GLM. GLM G-P may use inverse, identity, and log link functions. 
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Parameters estimation in GLM G-P may use iterative weighted least squares. 
GLM G-P is similar to GLM gamma. 
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