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Abstract

Let S be a closed Riemann surface of genus p > 1 with one point x
removed. Let # be the set of mapping classes on S isotopic to the
identity on S U {x}. In this paper, we show that for any genus p > 1,

the minimum Lq(&) of asymptotic translation lengths of all pseudo-

Anosov elements of Z satisfies the inequality % <Le(£F) <1

1. Introduction and Main Results

Let S be a closed Riemann surface of genus p with n points removed.
Assume that 3p — 4 + n > 0. One can associate to S a curve complex C(S)

which is endowed with a path metric d-. Let C(S) denote the set of vertices
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of C(S), which can be identified with the set of isotopy classes of simple
closed curves on S. See Section 2 for the definitions and terminology.

For any u e Cy(S), and any pseudo-Anosov map f of S, we can define

te(f) as

Tc(f)=|%nJQfM“TW. (L.1)

It is known that t-(f) does not depend on the choice of u € Cy(S) and is
called the asymptotic translation length for the action of f on C(S). Bowditch

[3] proved that t(f) for each pseudo-Anosov map f are rational numbers.

Let Mod(S) denote the mapping class group of S, and let H < Mod(S)
be a subgroup. Denote by

Le(H) = inf{te(f): for all pseudo-Anosov elements in H}.

By Masur-Minsky [10], there is a positive lower bound for L.(H) that
depends only on (p, n).

For a closed surface S of genus p > 1, Theorem 1.5 of [5] asserts that
4log(2 +v/3)

lo ( - 1) |
plog p -5

Later, Gadre-Tsai [6] improved the lower and upper bounds for L-(Mod(S))

Le(Mod(S)) <

as

L < Le(Mod($)) € ————

162(2p - 2)% +30(2p - 2) plip-4

This particularly implies that L-(Mod(S)) —» 0 as p — +x.

The estimations of L.(H) for certain subgroups H of Mod(S) were also
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considered in Farb-Leininger-Margalit [5]. Let I denote the fundamental
group of S. For any k > 1, let T}, be the kth term of the lower central series
for I'y. This chain of subgroups forms a filtration. Denote by 4% the kernel
of the natural homomorphism of Mod(S) onto Out(I'/T}). Then for the
sequence of the subgroups 4, Theorem 6.1 of [5] states that for any k, a

similar phenomenon emerges. That is, Lq(A44(S)) > 0 as p — +o.

In this paper, we are mainly concerned with the case in which S contains
only one puncture x. Let S=sU {x} be equipped with a hyperbolic metric.
Then the subgroup # < Mod(S) that consists of mapping classes projecting
to the trivial mapping class on S is highly non-trivial and is isomorphic to
the fundamental group rcl(§, Xx). A topological description of this kind of
mapping classes is given in [8].

It is well-known (Kra [9]) that # contains infinitely many pseudo-
Anosov elements, and the conjugacy class of a primitive pseudo-Anosov
element of & can be determined by an oriented primitive filling closed

geodesic C on S. Here a closed geodesic ¢ is said to fill S if all components

of §\{E} are either (topological) disks or once punctured disks, which is

equivalent to that € intersects every simple closed geodesic on S.

In contrast to the above estimations for L-(H) for various subgroups H
of Mod(S), in the case where H = Z, we can view L (%) as a function of
(p, n), and see that L-(Z#) performs quite differently than L-(Mod(S)) and
Le (A% (S)). The main purpose of this paper is to prove the following result.

Theorem 1.1. For any type (p, 1) with p > 1, 2 <Le(£)<1.

We may find a filling closed geodesic ¢ on S and a vertex i € Co(S)
so that U intersects ¢ only once. Let u € C(S) be the vertex obtained from

U by removing x. Let f € & be a pseudo-Anosov element obtained from
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pushing x along ¢ (see Theorem 2 of [9]). We know that {u, f(u)} forms
the boundary of an x-punctured cylinder on S. This means that u and f(u)

are disjoint, so that d-(u, f(u)) =1. By the triangle inequality and the fact

that f is @ homeomorphism, this gives do(u, f™(u)) <m forall m>1. It

follows from (1.1) that t(f) <1 and thus that Lo(&#) <1. The assertion

that Lo (Z) > % follows from the following result.

Theorem 1.2. Let S be of type (p, 1) with p>1 andlet f € & be a
pseudo-Anosov element. Then there is u € C(S) such that for any integer m

with |m| > 1, we have

m|, if Im|<7,

de(u, £M(u)) > 2lm|+5 .
—3 if [m|>7.

Remark 1. In [10], Masur-Minsky showed that there is a constant ¢ =

c(p, n), ¢ > 0, such that d,(u, ™ (u)) > ¢/ m| for all pseudo-Anosov maps

f and all u e Cy(S). The quantitative estimation for c is, however, largely

unknown.

Let H be a hyperbolic planeand o : H — S the universal covering map

with a covering group G. Then G is purely hyperbolic. There is an essential
hyperbolic element g € G that corresponds to f (Theorem 2 of [9]). Let

axis(g) < H denote the axis of g; it is the invariant geodesic by the action of
g.

In the case where S contains only one puncture X, all vertices u in Cy(S)
are non-preperipheral, in the sense that u is homotopic to a non-trivial simple
closed geodesic on S as x is filled in. Thus, for each vertex ug € Co(S), there
defines a configuration (tp, Qf, %) that corresponds to ug. See Section 2
for explanations.



On the Minimum of Asymptotic Translation Lengths ... 213

For a vertex U eCO(§) and a filling geodesic C, the geometric
intersection number, denoted by i(c, u), is defined as the number of
intersection points between U and €, which is also given by

i(C, U)=min| C"'NT"|,
where ¢’ and U’ are in the homotopy classes of ¢ and U, respectively.
Note that t.(f) does not depend on the choice of u e Cy(S). A non-
preperipheral vertex ug € Co(S) can be selected so that Qf N axis(g) # &
and i(o(axis(g)), Up) = 2.

Outline of the paper. For m > 1, let up, be the geodesic homotopic to the

image of ug under the map f™. Suppose that

[Ug, V1, ey Vg, U ] (1.2)
is an arbitrary geodesic path in the 1-skeleton of C(S) that connects uy and
Uy With @ minimum number of sides. Then all Vi, 1< j<s, are non-
preperipheral, which allows us to obtain the configurations (rj, Qj, OZ/J-)

determined by the vertices vj.

Observe that the sequence H\A'j (see Figure 2 and (3.2) for the definition
of A’j) monotonically moves down towards the attracting fixed point of g.
The sequence Q tends to move out of Af,. We show that if v; and v, are
disjoint, then Q; and Qj,, are either adjacent or Q; (1€2;,1 # &. So the
movement of Q; is not too fast. This means that a sufficient amount of ©;

is needed to get out of Ajp,. Careful analysis shows that for any m > 7, the

distance d.(ug, up, ) is greater than or equal to (2m + 5)/3, and if 0 < m < 7,

then d.(ug, Uy ) = m. It follows that % < Le(&£) < 1. If mis negative and

m < —7, the proof is similar.
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2. Curve Complex and Tessellations in Hyperbolic Plane

Let S be a hyperbolic surface which is of type (p, n) with 3p—4+n
> 0andn > 1. Let x be a puncture of S and let S=sU {x} be also equipped
with a hyperbolic metric.

Due to Harvey [7], one can define the curve complex C(S) of dimension
3p — 4 + n as the following simplicial complex: vertices of C(S) are isotopy
classes of simple closed curves, and k-dimensional simplicies of C(S) are
collections of (k + 1)-tuples {ug, Uy, ..., U} of disjoint vertices on S, where
two vertices uj and u; are disjoint if there exist disjoint representatives of u;
and uj. Then C(S) is of finite dimensional. Let Cy (S) denote the k-skeleton
of C(S). We then introduce a metric d- on C(S), called the path metric, in

the following way. First we make each simplex Euclidean with side length
one, then for any vertices u, v e Cy(S), we declare the distance d.(u, v)

between u and v to be the smallest number of edges in C1(S) connecting u
and v. It is well-known that C(S) is connected and is 8-hyperbolic in the
sense of Gromov (Masur-Minsky [10]).

The curve complex C(S) is similarly defined. Every vertex in Co(S) or

Co(S) can be identified with a simple closed geodesic. Let C(S) be the

subcomplex of C(S) consisting of non-preperipheral vertices. Thus, there
defines a fibration @(S) — C(§) by forgetting the puncture x. According to

Birman-Series [4], the union of all simple closed geodesics on S is not all of
S. Whence we may choose a point x that misses every simple closed

geodesic on S, which means that a vertex in C(§) can also be regarded as a
vertex on @(S) (by simply removing the point x). We see that the fibration

C(S) - C(S) admits a global section.

Let G be the group of covering transformations of the universal covering
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map o:H — S. The x-pointed mapping class group Modg, which is
defined as a group that consists of mapping classes fixing x, is a subgroup of
the ordinary mapping class group Mod(S) with finite index n. It is well-

known (Theorem 4.1 and Theorem 4.2 of Birman [2]) that there exists an
exact sequence

0 — m(S, x) - Mod% — Mod(S) — 0, (2.1)

which defines an injective map of n1(§ , X) into Modg. Note that an

isomorphism between G and n1(§, x) is obtained by choosing a lift X of x

in H to serve as a base point. As such, we obtain an injective map vy : G

— Mods.

Following Bers [1], we denote by & = {h(X): h € G} — H. Then & is
a discrete subset of H invariant under the action of G. Let G be the covering
group of a universal covering map o' : H — S. Clearly, H/G =~ S = (H/G)

\{x}, and there exists an exact sequence

15T 56 >G o1,

where I' is the covering group of a universal coveringmap v: H > H\«.

Let Q(G) (resp. Q(G)) be the group of quasiconformal automorphisms
w of H satisfying wGw ™! = G (resp. wGw ™! = G). Two elements wy, w, €
Q(G) (or in Q(G)) are declared to be equivalent (write wy ~ W) if wy = w,
on oH =St Let Qu(G) denote the subgroup of Q(G) consisting of maps
projecting (under o) to maps on S leaving the puncture x fixed. For any
w e Q(G), there is a map wy € Q(G) with [w] = [wp] such that wy(=/)
= &/. Thus w defines a map on H\ ., and hence wy can be lifted (through

0") to amap my € Qy(G). By Theorem 10 of [1], the map ¢ : Q(G)/~—
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Mod§ defined by sending [w] to the mapping class represented by the

projection of wg under o' is an isomorphism. For simplicity we denote by
[w]* = ¢*([w]) for a [w] € Q(G)/~. It is known that G can be regarded as a
normal subgroup of Q(G)/~ so that the restriction ¢"|G is exactly the
injective map v : G — Mod3. In other words, we have ¢ (G) = y(G) = £.

Let h* € & < Mod§ denote the mapping class ¢(h) = y(h) foran h € G.

Fix € € Co(S). Let {0 1(Z)} be the set of geodesics & in H with o(2)
=%. As % is simple, all geodesics in {o*()} are mutually disjoint. By

Theorem 2 of Kra [9], there is a bijection @ of {g_l('é)} onto the set & of

x-punctured cylinders on S whose geodesic boundary components project to
€. Two such cylinders C, C' € & are called equivalent (denoted by C ~ C')

if they share one boundary component.

Itis clear that {p~1()} gives rise to a partition of H. Let P denote the

set of components of H\{o™}(Z)}. Let tz be the positive Dehn twist along
€, which is supported in a small neighborhood A of . Let & < H be
the union of all thin neighborhoods of & e {0 2(8)} so that o(#") = A" For

every Qe %z, there is a lift t:H — H of t; so that the restriction
Tlo\ ¢ = id. Itis easy to see that t € Q(G)\G and thus [t] € (Q(G)/~)\G.
Let Fz < Co(S) denote the fiber over £ that consists of all u e Co(S) for
which U = €, where U is homotopic to u if u is viewed as a curve on S. By

Lemma 3.2 of [13], [¢]" is represented by the positive Dehn twist t, along a
non-preperipheral geodesic u for a u € F;z. More precisely, the argument of

the lemma yields that ®(¢) ~ ®(c') for any two boundary components ¢, ¢’ e

20 = {o"}(%)}. The components of 5Q are one-to-one correspondent with
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the elements in the equivalence class of ®(C) in &2. Thereby we obtain for

each ¢ e CO(§) a well-defined surjective map
Xz - %z > F; (2.2)

which sends Q to u. yz satisfies the invariance property: For every h € G,

we have tq) = h(g~t)h~L. Hence

[t = [Mg 7 )h ™" = h*[o " (h* ) = tr )

Let Q € #; be such that xz(Q) =u for a given u e F;. Observe that the
complement of the closure of Q is a disjoint union of half planes. Each such

half plane A includes infinitely many geodesics in {9_1(5)}, and no geodesics

in {0~X(Z)} are contained in Q. Thus, there are infinitely many half planes

contained in A. Let % be the collection of all such half planes. Obviously
% is a partially ordered set defined by inclusion. Maximal elements of %
are called first order elements (A is one of them), elements of % that are
included in a maximal element but are not included in any other elements of
% are called second order elements, and so on. We call the triple (t, Q, %)

the configuration corresponding to u.

For any two vertices uq, U, € @O(S), let (11, Qq, %) and (15, Qp, %)
be the configurations corresponding to u; and u,, respectively. That is, u; =
%z (Qq) and up = %z (Qp).

Lemma 2.1. Assume that there are maximal elements A; € 24 and A,
€ % such that A{ N A, # & and that Aq is neither contained in A, nor

contains A,. Then dg(ug, uy) > 2.

Proof. We are left with two cases drawn in Figures 1(a) and (b). If
Figure 1(a) occurs, then since o: H — S is a local homeomorphism, U;

intersects U,, which leads to that u; intersects u,.
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T2

f

(@) (b)
Figure 1

If Figure 1(b) occurs, then by considering the iterations 75 and t5t]

on the unit circle S for large n and m, from Lemma 4 of [12], we conclude

m_n n_m m n n m H
that tpty # 1175 . Thus tu2 ° tul # tul ° tu2. It follows that uy intersects us.

O

In particular, in the case where U; = U, = €, i.e., Uy, Uy lie on the fiber
Fz, then Q, Q, € Z;. If O is disjoint from Q,, Lemma 2.1 asserts that
up intersects up. Now consider the case where @ and Q, € Z; are

adjacent; that is, Q; and Q, share a common geodesic in H.
Lemma 2.2. Let Qq, Q, € #;. The following are equivalent:
(i) & and Q, are adjacent,
(ii) de(ug, up) =1, and
(iii) {uy, up} are boundary components of an x-punctured cylinder on S.

Proof. Suppose that QQ; and Q, are adjacent. Then Q, — A; for an
element A; € 74 and O, = A;\{all second order elements of %4 in A;}. Let
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e = Q; N Q, denote the common boundary geodesic in H. As usual, let 1;,
i =1, 2, be the lifts of t; that is defined by Q;. Let u; = %z(Q) and up =
1z (Q,). Let A be the 1-neighborhood of e. Then .4 is a crescent
neighborhood that touches st at two points {y, z}. Leth € G be the primitive
simple hyperbolic element that keeps e (and hence also .44) invariant and
has the same orientation as 1. It is easy to see that {y, z} are fixed points of
h and that .45 /(h) is a cylinder with central geodesic €. From Theorem 2 of
t1

[9, 11], h™ is represented by the spin ty ot where we note that u; and

Up are boundary components of an x-punctured cylinder on S.

On the other hand, by construction, h_lrl leaves the identity on €.

Clearly, Q, is the maximal region so that the restriction h_l’tl o\ s the

identity. It follows that h_l’tl = 15. As such, by the construction of yz,

(W' = [ro]" =, and [11]" = t,,. But

-1 -1 -1
[h Tl]* = (h*) ° [Tl]* = tUO ° tul © tU]_ = tUO‘

It follows that t,) =t,, and thus up = u,. Since u; and ug are boundary

2
components of an x-punctured cylinder on S, u; and ug are disjoint. So u;

and u, are disjoint. This particularly implies that d-(xz(Q1), xz(Q5)) = 1.

Conversely, suppose that d.(uj, uy) =1. Since Uy = Uy =€, {ug, Up}
forms an x-punctured cylinder on S. It follows from Theorem 2 of [9, 11] that

there is a simple hyperbolic element h € G such that h* = ty, ° tu‘zl. That is,

Ty = h_lrl, which implies that ; and Q, are adjacent. Finally, the fact

that (ii) and (iii) are equivalent is obvious. O

It follows from Lemma 2.2 and Lemma 2.1 that the map (2.2) is also
injective. Hence we have established the following:
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Lemma 2.3. The map y; defined as (2.2) is a bijection which satisfies

the equivariance condition yz(9(Q)) = g*(xz(Q)) forany & e CO(§), Qe
Z#;, and g € G.

Suppose now that g, Q, € #Zz and Q; # Q,. Then € is disjoint from

Q,. There are two cases: either Q; is adjacent to Q,, or  is disjoint from
Q,. If Qq is adjacent to Q,, then by Lemma 2.2, dp(uq, up) = 1. If O is

disjoint from Q,, by Lemma 2.1, we have d¢(uy, uy) > 2.

Remark 2. In [17], we further discussed the case where dg(uy, uy) > 2,
and give a characterization for the two geodesics u; = 5z (€1), Uy = %3z(Q>)

to satisfy the condition d(uy, up) = 2.
In the case where U; # Uy, we have:

Lemma 2.4. Let uy, uy € Co(S) be such that Uy = U,. The following

statements are equivalent:
(i) de(uy, up) =1,
(i) Q4 NQ, # @ and {p ()} is disjoint from {o~*({i,)}, and

(iif) for any maximal elements A; € %4 and A, € %, either A; and A,

are disjoint, or A; and A, are nested (that is, either A; < A,, or Ay < Aq).

Proof. If uy, u, are disjoint, then y, T, are also disjoint. Hence {o~*({i; )}

and {oX({I,)} are disjoint. The fact that Q; N Q, = @ follows from Lemma
2.1. This shows that (i) implies (ii).

To show that (ii) implies (iii), we notice that t; and t, are the lifts

of t=

g and tg. tp and 1, determine the configurations (11, ©, %) and
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(19, Qy, %). Since {g_l(ﬁl)} and {g_l(ﬁz)} are disjoint and Q; N Q»,
= &, (iii) is satisfied.

Finally, if (iii) holds, then Q; N Q, # & and U; and U, are disjoint. If
up intersects u,, then we are in the situation of Figure 1(b), and we must

have O N Q, = . This leads to a contradiction. O

Remark 3. If a maximal element A; € %4 contains a maximal element
of %, then A; contains infinitely many maximal elements of %5; but if
A1 € Z4 is contained in a maximal element A, of %5, then such a A, is

unique. The same is true for maximal elements of %.

Throughout the rest of the paper we assume that S is a closed hyperbolic

Riemann surface minus one point x. In this case, we have Mods = Mod(S)

and Co(S) = @O(S); that is, every vertex u e Cq(S) is non-preperipheral.
3. Partitions and Regions in Hyperbolic Plane Determined by Vertices

Let f € Z# be a pseudo-Anosov element. By Theorem 2 of [9], there is

g € G such that g* = f and g is an essential hyperbolic element, which

means that the projection C := p(axis(g)) is an oriented filling closed

geodesic on S.

Let 0y € Co(S). Then i(ly, €) = 1. Choose Qp e Y, SO that Qp (1
axis(g) # <. Obviously, Qf determines a configuration (g, Qf, %) that
corresponds to a vertex y,(Qp) = Up € Fg, < Co(S). Notice that € S
is a filling geodesic that intersects Uy. Thus axis(g) crosses infinitely many

geodesics in {g_l(ﬁo)}. This particularly implies that axis(g) cannot be

completely included in Qg.
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Since Ug is simple, all geodesics in {g_l(ﬁo)} are mutually disjoint. We
conclude that there are maximal elements Ag, Ay € %, which are disjoint
from each other, such that axis(g) crosses both Ay and Aj and that Qf <
H\(Ag U Ap). We may assume that Ay and Ay cover the attracting and
repelling fixed points {A, B} of g, respectively. Ay and Ay are shown in

Figure 2.
Qo Qs Qm-2 Qm-1 Qm
‘ﬁ:] ‘A’i "—\:u—'z ﬁ':n—'l &:n \
\ Sm—1 b,
B axis(g) \ A
.P[) P.'i Pru—? Pm—l P‘m
[ Ao "
Figure 2

For each k > 1, let uy denote the geodesic homotopic to the image of ug

under the map X, Then Uk is a non-preperipheral geodesic and in particular,
! ! " ._ K_r —k k ’ k ’
(tk, Qk, %) = (9"t09 ", 9" (). 9" (%)) (3.1)
is the configuration corresponding to uy. This tells us that
Aj = g% (ap) (32)

is a maximal element of %4 that covers the repelling fixed point B of g. All

the half planes {A} } are also shown in Figure 2.

For any half plane A = H, denote by A the boundary geodesic of A in
H. It is obvious that for k > 0,

9(0Ak) = OAjcs1. (33)
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For simplicity, we also write {P, Q. } = S* N 2A}. Observe that S\{A, B}
has two components £ and R, where £ is the component containing all
labeled points Q; and R is the component containing all labeled points R.

For any two points X, X' e £, denote by (XX') the subarc of L
connecting X and X' Likewise, let (YY') denote the subarc of R
connecting two points Y, Y’ € R. Points lying on £ or on R can be ordered
as follows: we declare X < X' if and only if (BX) < (BX') < L. Likewise,
wesay Y <Y’ ifandonly if (BY) < (BY') c R.

Some basic properties for the labeled points B, and Qy are included in
the following lemma.

Lemma 3.1. We have:

(i) all B and Qy are hyperbolic fixed points of G satisfying P, < P, <

e < Pm < ... and Ql < Q2 < eee <Qm < eeey
(ii) for all k > 0, g(Qx) = Qk 1 and g(R,) = P41, and more precisely,
(iii) for all k > 0, 9(Qx Q1) = (Qk+1Qk+2) and g(PcPc11) = (PsaPics2)-

Proof. Notice that {P, Q)= 0Ak NS and A} €% are maximal
elements. We deduce that 0A| are axes of simple hyperbolic elements of G.
It turns out that P, and Qy are hyperbolic fixed points of G. Since o(0A)
={ip for all k>0, {6A} :k >0} c {o({p)}. Hence dAf.q is disjoint
from 0A| forall k > 0. (i)-(iii) follow immediately from (3.2) and (3.3). O

Lemma 3.2. Let G =« H be a geodesic that divides H into two half
planes A and A’. Suppose that o(d) = S is a simple closed geodesic and A
is disjoint from axis(g) and covers Q, for some k. Then A cannot cover any

other labeled point Q;.
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Proof. Since o({0) € CO(S~) is simple, for any h € G, h(6A)N oA = @.

In particular, g(6A) N oA = &. Consider the action of g on H. For those A
disjoint from axis(g), we have g(A)N A = . If A covers Q¢ and Q..

and is disjoint from axis(g), then by Lemma 3.1(iii), g(A) covers Qy ., and
Qx .2, Which implies that g(A) N A # &, contradicting that g(A) N A = &.

[

Let 8y = a be the angle between 0A; and axis(g). Unless otherwise
stated, throughout the paper the angle between axis(g) and a geodesic |
intersecting axis(g) is defined as the angle through which I must be rotated
(in counterclockwise direction) to make it coincide with axis(g). For j >1,

we let §; be the angle between axis(g) and the geodesic joining from Qg to
Pj. See Figure 2. We see that
=+ <Oy < Oy < - < 81 < 9.

Since g can be regarded as a Mobius transformation of H which keeps
axis(g) invariant, §; is also the angle between axis(g) and the geodesic

joining from Qy to Pj, forall k > 0.

More generally, &; are invariant under Mdbius transformations on H.
This in turn implies that for every h e G, §; is also the angle between
h(axis(g)) and the geodesic connecting h(Qp) and h(P;).

To each geodesic U intersecting axis(g), there associates an angle
which is defined as follows. Write {X, Y5} = G N'S!, where X e £ and
Y € R. Let U’ be the geodesic connecting Y; and g‘l(xo). Then we
define 8; as the angle between U’ and axis(g).

Lemma 3.3. Let V. H be a geodesic intersecting axis(g). Let o; denote

the angle between vV and axis(g). Suppose that oy < 85. Then {gi(\7) :i>0}

intersects (.
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Proof. Suppose that gi(\7) are disjoint from @ for all i. Then gi(ﬁ) are
disjoint from v for all i. Let p be the integer such that v lies in between
gP (@) and gP*(d). See Figure 3.

It is obvious that oy is no smaller than the angle o between axis(g) and

the geodesic connecting gP(X;) and g I°+1(Yﬂ). Note that g keeps axis(g)

invariant. a is also the angle between axis(g) and the geodesic connecting

g‘l(Xﬁ) and Y which is, by the definition, is equal to 8;. We thus conclude

that o = 85, and so o = 8, which contradicts the hypothesis. O

9" (Xa) 9" (Xa)

9" (Ya) 9" (Ya)
Figure 3
The following lemma will be used frequently in the proof of Theorem
1.2.

Lemma 3.4. Let U, V be geodesics in H intersecting axis(g). Let oy
and oy be the angles between axis(g) and U and between axis(g) and V,

respectively. Assume that 3y < oz < 841 for some g > 1. Then {gi(\7):
i > 0} intersects U whenever oy < 8¢
Proof. The assumption that 54 < o; < 8gq_1 and 8¢ > 84,¢ implies that

8 = 8q41. Since oy < 841, We have ag < d; and hence by Lemma 3.3,

we conclude that {gi(\7) ;1 > 0} intersects the geodesic 0. O
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4. Classification of Vertices of C(S) in Terms of Essential

Hyperbolic Elements of G

For each v e Cy(S), V € CO(§) is non-trivial. Let (t, Q,, %) denote
the corresponding configuration. By the definition, Q, is a component of

H\{o}(V)}. As we saw before, axis(g) cannot be completely contained in

Q. There are two possibilities:

(1) axis(g) is contained in a maximal element A, of %, or

(2) there is a pair (A, Ay) of maximal elements of %, such that axis(g)

intersects @A, and Ay, where A, and A\ are the maximal elements of

%, that cover the attracting and repelling fixed points A, B of g, respectively.

*

By Lemma 2.1 of [14], A, is identified with the maximal element of %
containing g_l(H\AV). In cases (1) and (2) above, we denote {X,,Y,}=
oA, NSt

If (1) occurs, A, covers both attracting and repelling fixed points of g.
Moreover, the boundary &A, is disjoint from axis(g). Such an Q, is

referred to as a type (1) region. We say that Q,, is supported on £ (resp. R)

if (H\A,)NSt < £ (resp. (H\A,) NSt = R). Itis clear that for a type (1)
region Q,, either {X,,Y,}e £ or {X,,Y,}e R, depending on whether

Q, issupported on £ oron R.

Let {A}} be the half planes as defined in (3.2). It is known that A} are
maximal elements of %4. In what follows, we write “X,,, Y, < Qy” to mean
that Q, < Ay is of type (I) and is supported on L. Likewise, “X,, Y,
< B” means that Q, < Aj is of type (I) and is supported on R.
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In Figure 4(a), a type (1) region Q, and the maximal element A, € %,
are drawn, where Q, is supported on £ and is contained in Aj. In this case,

we have X,, Y, < Q.

(@)

Figure 4

I (2) occurs, then axis(g) crosses A, and 6Ay and Q, < H\(A, U AY).
Such an Q, is referred to as a type (Il) region. See Figure 4(b). In this case,
Xy and Y, are separated by axis(g). As always, we let X, € £ and Y, € R.
By our convention, Q, c A ifand only if X, < Q, and Y, < P.

It is known that Qg and Qp, are type (I1) regions. Also, in both cases (1)
and (2), we remark that A, covers the attracting fixed point A of g, while for

every k > 1, Aj covers the point B, but does not cover the point A.

The result can be summarized as the following lemma for future
reference:

Lemma 4.1. There exists a maximal element A, € %, with these

properties:
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(i) A, covers the attracting fixed point A of g,
(if) Ay is not contained in A forany k > 0, and
(iii) A, is not disjoint from axis(g).

Recall that for every non-negative integer k, u, € Co(S) is associated
with the configuration (1}, Qk, %) = (gkrbg_k, gk(Qb), gk(%')) and A}
€ % is a maximal element such that {RB,, Q. } = 8A} N S™.

Lemma 4.2. Let Q, be a type (lI) region. Let A, be as in Lemma 4.1.
Suppose dg (v, ug) = 1. Then for some k > 1, Q, < X, and P, <Y, (which
is equivalent to that A, < H\A}).

Proof. Assume that X, < Q. By Lemma 4.1, A, is not contained in Aj
and A, N Al = @. If 6A, N oA = D, ie., P <Y,, thensince p: H — S
is a local homeomorphism, V intersects Uy. Hence v intersects uy as well,
and this contradicts the hypothesis.

If Y, <P, then 0A, N oAk =& and A, U Ag = H. See Figure 1(b).
Note that A, and A} cover the attracting and repelling fixed points of g,
respectively, and A, N A} # @. From the construction, Q,, ¢ H\(A, U AY).
Hence Q, is disjoint from H\Aj. But Q) < H\Aj. We conclude that Q,
is disjoint from (but not adjacent to) Qj. If V = Uy, thatis, Q,, Q} € %,
then from Lemma 2.2, d-(v, uy) > 2. If V = Uy, then from Lemma 2.4, we
also conclude that d.(v, uy) > 2. The case where Y, = B cannot occur.

Hence Q¢ < X,. The same argument also yields that B, <Y,,. O

Lemma 4.3. Let Q, be a type (I) region. Assume that dg(v, uy) =1.
Then A} < A,.

Proof. We only handle the case where Q,, is supported on £ and show
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that Q < X, and Qi <VY,. If X, =Q, then Y, # Q. Let gy € G bea
primitive hyperbolic element such that axis(gy ) is the geodesic joining B
and Q. Notice that (ty, Qy, %) is the configuration corresponding to v. It is
apparent that oA, is the axis of another primitive hyperbolic element h of G,
where h = gy. Since Qg = X,, h and gy share the same fixed point Qy,

which contradicts that G is a discrete group. We conclude that X, # Q.

Suppose now that X, < Q. If Y, = Qy, the same argument as above
leads to a contradiction. If Y, < Q,, then Q, N Q = &, contradicting that
de(v, ug) =1. If Y, > Qy, then 0Ag intersects 0Aj. This implies that v
intersects U, = Up. Again, this contradicts that d.(v, u,) = 1. This proves

Qi < Xy. Similarly, one can prove Qy <Y,. O

We proceed to study a geodesic path (1.2) in C1(S) that connects ug
and up, for any m > 1. From the definition, we know that d.(ug, v{) =1,
de(vs, Up) =1and de(vj, vjuq) =1for j=1,.., s -1 Since up, Uy, and
all v; are non-preperipheral, these vertices are associated with configurations.
As we have seen, (tp, Qp, %) and (t,, Qm, %) are the configurations
for up and up, respectively. Let (rj, Qj, %j) be the configurations

corresponding to those v; for j =1, .., s.

The following lemma is a direct consequence of Lemma 4.3 and Lemma
4.2 (by setting v = vg and k = m):

Lemma 4.4. With the same notation and terminology as above, we have
(i) if Qg is atype (II) region, then P, <Y and Qp, < Xg, and

(it) if Qg is atype (1) region and is supported on £, then Q,, < X and
Qm <Ys. O
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A question arises as to whether Ag) = H\A implies s = sg. The answer
to the question is negative. However, for a type (I1) region Qg We have the
following result.

Lemma 4.5. Let Qg be the first type (I1) region in the list {Qq = Qp,
Qq, ...y Qg, Q| satisfying Py < Y, .

() If Py =Yg, then Xg, = Qp. Inthis case, s = sp.

(ii) If Py <Ys,, then Xg, # Qp. Inthis case, s>sg +1 if Xg <Qp,
and s >sp>m+1 if Xsy > Qmn and all regions prior to Qg, are type ()
regions.

Proof. (i) If Ys, = Py, by the same argument of Lemma 4.3, we conclude
that XSO = Qp- Thus, Ay, is a component of 8950, which means that all
boundary components of Qg project to the same 0(6AR) = Ug. This in turn
implies that Qg , Qp € %;,. Note that Qg and Qp, share the common
boundary component 0Ap,. It follows that Qg is adjacent to Qp,. Hence
from Lemma 2.2, dc(vSO, Up) = 1. In particular, Vso and uy, are disjoint,

which says that s = sg.

(if) Assume that Py, < Yo Again by the same argument of Lemma 4.3,
we see that X, # Q. If Xg, < Qp, then by Lemma 4.2, d¢(vs,, Up) = 2.

Hence s > sg + 1.

We now turn to the case where Ys, > Py, Xg, > Qp, and all regions

So
prior to Qs, are type (11) regions. We claim that Xsg-1 > Qm-1 and Yso-1

> Pp_1. Indeed, the assumption says that Qs is a type (Il) region. So

there exist maximal elements Ag), A, € %, SO that Qg = H\(Ag, U A,),
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where A*SO contains the geodesic joining Qp_; and Py,_;. In other words,

we have Qg A1 = .

On the other hand, the pair (Ag)_1, A*So_l) of maximal elements of
-1 is chosen so that Qg1 < H\(Ag, 1 U A*So_l). Since Vg, is disjoint
from \750_1, Qg1 is disjoint from 9Qg,. So if Xg 1 <Qp_1, we must
have Qg, 1 1Qg, = . This contradicts Lemma 2.4, proving that X, 3 >
Qm-1. Similarly, one can show that Y5, 1 > Py_3. By an induction argument,
one similarly shows that X, _j > Qp_j and Ys,_j > Py_j forevery j with

0 < j <m. We conclude that s > s5 > m + 1. O

5. Consecutive Vertices in a Geodesic Path in the Curve Complex

In this section, we investigate consecutive vertices in a geodesic
[Ug, V1, -y Vg, Uy ] in C1(S) connecting uy and uy,. Consider again the
sequence

Qg = Qp, Q, ..., Qq, Q. (5.1)

Notice that Qg and Qy, are type (1) regions, and any other region in (5.1) is

either a type (1) or a type (Il) region. Unless otherwise stated, in what
follows, we assume that the first type (I) region in (5.1) is supported on L.

Let Qj_4, Qj be two consecutive regions in (5.1), and let A € %; and
Aj_y € %_, be the maximal elements obtained from Lemma 4.1. The
geodesics 0Aj and OAj_q intersect st oat {Xj, Y} and {Xj_q,Yj1},
respectively. Recall that X;, Xj_y € £ and Y;,Yj_1 € R.

Lemma 5.1. Assume that Q; is a type (I) region and Q;_; is a type (II)
region with X j_; < Qg and Yj_; < B. Then X, Yj < B if Qj is supported
on R; and X, Y;j < Qg if Qj issupported on L.
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Proof. The condition d¢(vj_1, vj) = 1 implies that d¢(Vj_q, Vj) = 1. If
Vj_1#Vj, by Lemma24,Q; NQ;_1+ . Since Qj_3 < H\(Aj_1UAT )
and since 0Q; and 0Q;j_ are mutually disjoint, we deduce that Q; <
H\(Aj_1 U A*j_l). The assumption also tells us that Q;_; < Aj, which
means that A;_; UAj =H and 0A;_1 N 0A} = Q. Therefore, Q; c A,
which says X, Yj < B if Qj issupported on R, or X, Y; < Qy if Q;
is supported on L.

If Vj_1=V; =V, then vj,vjq e and thus Qj, Q4 € %;. By
Lemma 2.2, Qj and Qj_; are adjacent. It is obvious that Qj N Q;j_; =
OAj_q; otherwise, Q; is of type (I1), which contradicts the hypothesis. It

follows that Qjc Ay, as asserted. O

Lemma 5.2. Suppose that Qj_; and € are both type (11) regions such

that Xj_; <Qy and Y; ;3 < R, for some positive integers k and ko. Then

Xj<Qk+1andYJ—<Pk0+l.

Proof. The proof is essentially the same as in Lemma 4.5(ii), and the
details are omitted. O

Lemma 5.3. Suppose that €2;_; is a type (1) region but Q; is a type (I1)
region. Then X_1, Yj_1 < Qy implies that X < Qy,q. Similarly, Xj_y,
Yj_1 < B impliesthat Y; < B

Proof. Suppose first that \7j # \7J-_1 are disjoint. Notice that ﬁj is in fact
the complement of all maximal elements of %j. Since Qj is of type (ll),
Qj < H\(Aj U AY), where, as usual, A'j e %; denotes the maximal element

that contains g 1(H\A i)
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Suppose that H\A ; is not included in Aj,4. The condition that v;_; is

disjoint from v; implies that all boundary components of Q; are disjoint
from all boundary components of Q;_;. Note that Q; < H\(A; U A*J-) and
Qj_1 < H\(Aj; UATj_;). By Lemma 3.1 and Lemma 2.1 of [14], Q;j_;
must be disjoint from ;. But this contradicts Lemma 2.4. It follows that

H\Aj < Aj,q. Therefore, Qj < Aj g,
Similarly, we can handle the case in which V; = V;_;. O

For each type (II) region Q;, let o denote the angle between axis(g)

and aAj.

Lemma 5.4. With the same condition of Lemma 5.3. Assume that X -1

Yj_1 < Qg and that o) > 84 for some integer g. Then Xj < Qg and Yj <
Pk+1+q-

Proof. By applying Lemma 5.3, we conclude that X j < Q1. Suppose
that P,1.q <Yj < Pcy2+q- Observe that 8 is the angle between axis(g)
and the geodesic joining from Qg and Py, which is also the angle between
axis(g) and the geodesic joining from Q. to P,1.q. We deduce that
Qu+j < Xj <Qgyz4j for some j=1. This leads to a contradiction. It
follows that Y; < R q.q. But certainly, Y; # Rc,q1,q. We conclude that

Yj < PFct14q, @nd hence Qj < Aj,q,q, asasserted. O

We now consider the case where there are consecutive type (I) regions in
the list (5.1).

Lemma 5.5. Suppose that ©j_; and €; are both type (I) regions. Then
Xj—l! Yj—l < Qk implies Xj, Yj < Qk+1' Similarly, Xj—l! Yj—l < Pk
implies X, Yj < B
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Proof. Again, we only treat the case where \7j_1 # \7j are disjoint. From
Lemma 2.4, we know that € N Qj_; # & and all the boundary components
of Q;_; are disjoint from all the boundary components of €3j. This implies
that 0Aj is disjoint from 0Aj_;. Hence either Aj_; c Aj or Aj < Aj_y.

In the former case, we have Qj c Ag.

In the later case, we consider the half plane H\A; and notice that
< H\Aj and that H\A contains H\Aj_;. Since Qj is a type (I) region,
H\ A is disjoint from axis(g). So if Xj > Q.4 and X_1, Yj_1 < P, then

H\Aj would cover both Qy and Q. But this contradicts Lemma 3.2. [

Finally, if there are r, 2 < r < j, consecutive type (1) regions in the list
(5.1), Lemma 5.5 can be extended to the following result.

Lemma 5.6. Suppose that Qj_ryq, ., Qj arer consecutive type (1)
regions in the sequence (5.1) such that X j_,.4, Yj_r41 < Q. Then Xj, Y

< Qu4+d, Where d = [r/2] is the largest integer less than or equal to r/2.

Proof. The assumption tells us that ©_, 4 is supported on £. We claim
that €j_r,, is also supported on L. Otherwise, ﬁj—r+1 is disjoint from
5j—r+2- By Lemma 2.4, we deduce that d¢(Vj_r41, Vj_r42) > 2. This leads
to a contradiction. An induction argument yields that all Qj_r+1, Qj,
must also be supported on L.

The fact that X j_r,2, Yj_ri2 < Qg follows from Lemma 5.5. Suppose
r > 3 and consider the type (I) region Q;_;,3 and the associated maximal

element Aj_r,3 € %_r,3. It is clear that either Aj_, ., c Aj_ .3 oOf
Aj_r+3 € Aj_yi2. In either cases, since Vj_, .3 € Co(S) is simple, by

Lemma 3.2, (H\AJ-_Hg)ﬂS1 cannot cover (QxQy41), which implies
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Xj—r+3s Yjor+3 < Q1. Butthen we must have X;_r.4, Yj_ria < Qui2
(if r > 4). Here we notice that V;j_,_ 4 € CO(§) is a simple geodesic, and by
Lemma 3.2 again, (H\Aj_y,4) st cannot cover (Qy1Qk+2)-

It follows from an induction argument that X j_r,q, Yj_r+q < Qk+[q/2]

for1< g <r. Setting g = r we conclude that X j, Y < Qy,q ford = [r/2].
O

6. First Three Vertices in a Geodesic Path Joining ug and uy,

Observe that Qg =Qq is a type (II) region that is contained in
H\(Ag U Ap). Since Ug is chosen so that i(Ugp, ¢) > 2, Ag UA] =H and
0Ag N 0AL = . Itfollows that Yo < P, and X < Q.

Suppose that Q; is a type (I) region supported on £. By Lemma 5.1,
X1, Y1 < Qq. Thisimplies Q; < A;.

If Qq is a type (1) region, then since Qg is of type (I1), by Lemma 5.2,
Y, < P, and X1 < Q,. This means Q; — A5.

By combining these two possibilities for 1, we conclude that Q; < A5.

Now take Q5 into consideration. If both Q; and Q, are type (I) regions,
then X4, Y; < Qq, and by Lemma 5.5, X5, Y, < Q,, which says Q, < A5.

If both ©Q; and Q, are type (Il) regions, then by Lemma 5.2, Y, < P3
and X, < Qg, which says Q, c Aj.

If Q is atype (II) region but Q, is a type (I) region, then by Lemma
5.1, X5, Y, <Py or Xy, Yy <Qy, both of which imply that Q, < A5.

In the case where € is of type (1) and Q, is of type (Il), we have
X1, Y1 < Q. By Lemma 5.3, X, < Q,. We need to rule out the possibility
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that the other end Y, of 0A, is pretty far down, such as Y, € R is near to

the point A. Notice that (H\A;) N ST < (QuQy).

Since S is a surface with type (p, 1), we have Cy(S) = @O(S), which

tells us that every vertex in Cq(S) is non-preperipheral. This in turn implies
that ¥, = S is a simple closed geodesic. Recall that (t;, O, %) is the
configuration corresponding to vy, and that € = p(axis(g)) is a filling
closed geodesic that intersects vj. Hence axis(g) intersects some geodesics
in {o}(¥,)}. Let y; e {o1(¥,)} be such a geodesic. Since o(6Ah) = 0(BA])
= @iy is disjoint from o(y;) = ¥, and since {0 (%)} = H consists of mutually

disjoint geodesics, we conclude that gi(yl) are disjoint from 0Ag and OA;.

Observe also that all geodesics gi(yl) are disjoint and intersect axis(g).
These geodesics are also disjoint from 0A,. Let 1 denote the angle between
axis(g) and vy; (which is also the angle between axis(g) and any gi(yl)),
and let 8(y;) denote the associated angle as defined in Section 3. Then
[3(y1)] = 85, where we define [a]=38j,1 if 8,1 <a<3j. By Lemma
3.3, By = 8;. Thus by Lemma 3.3 again, oy > 8(y1) > 8, where we recall
a, is the angle between axis(g) and 0A,. Since X, < Q,, by Lemma 5.4,
we obtain Y, < Py. Thatis, Q, < Aj.

By combining all the possibilities for Q; and Q,, we conclude that Q,
< A). From Lemma 4.2 we thus obtain the following result.

Proposition 6.1. Let ug € Co(S) and let (tp, Qp, %) be the
corresponding configuration. Let C < S be a filling closed geodesic

determined by a pseudo-Anosov map f =g* e.Z for an essential

hyperbolic element g € G, with the properties that i(C, Up) > 2 and Qj N

axis(g) # . Then for any m > 2, any geodesic path [ug, vy, ..., Vg, T™(up)]
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in C(S) joining uy and f™(up), we have Q; — A, and Q, — A}, where
Qq, Q, correspond to v and vy, respectively. Consequently, it holds that

de(Ug, F2(Up)) =3 and de(ug, f4(up)) > 4.

Remark 4. In fact, for any Riemann surface S of type (p, n) with 3p + n

> 4, the results in [14] and [16] show that for m = 3 or 4, d.(ug, f™(up))

>m forany up € Co(S) and any pseudo-Anosov map f e Z.

7. Proof of Theorem 1.2

Following the notation and terminology introduced in Section 3, we

know that ¢ = p(axis(g)) is an oriented filling closed geodesic on S. Thus
i(C, T1) =1 forany i e Cy(S). Choose iy so that i({iy, €) > 2.

Refer to Figure 2. A geometric observation reveals that 0Ay = 0A] if and
only if i(Ug, €) = 1. Thus the condition i(Uy, €) > 2 guarantees that 0Ag lies
in between 0Ag and 0A;. Recall that the closure of €y is the complement

of all maximal elements of 2. We have Qf < H\(Ay U Ap) and hence
also Qn, < H\AL,.

We only prove the result for m > 0. It is trivial that d-(ug, f(ug)) > 1.
By Proposition 6.1, dz(ug, f™(ug)) > m for m = 2, 4. By Theorem 1.1 of

[14], d¢(ug, f3(ug)) = 3. So we assume that m > 5. As in Section 3, we
assume that (1.2) is a geodesic path in C;(S) that connects uy and u,,. Again,

let (v, Qj, %;) be the configurations corresponding to v; for j =1, ..., s.

Let A be the component of H\Qg obtained from Lemma 4.1. By Lemma
4.4, we know that Ag < H\A},, which is equivalent to that {Xg, Y} = st

(1 0A lies outside of Ap, N st
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First we suppose that Qq, ..., Qg in (5.1) are type (I) regions. For any
two successive regions Qj, Qj, where 1< j<s-1 we denote the
components of H\Q; and H\Q;, by A and Aj,4, respectively, which
are obtained from Lemma 4.1. Then Lemma 2.4 asserts that either Aj c
Aji0rAjy < Aj. As aconsequence, if € is supported on £, then so is
Qj,1. We see that all Q; are supported on L. It is also readily seen that
Ag N AL, # . By Lemma 4.2, do(vg, Uy) = 2 unless Xg > Qp,. Suppose
that X > Qp. Since Xy, Yy <Qq, from Lemma 5.6, X < Q[s/2]41. It follows
that Qp < X5 < Q[s/2)41- Hence m+1<[s/2]+1<s/2+1, which gives
S > 2m.

We assume throughout the section that there is at least one type (II)
region among Qy, ..., Qg. We rewrite the sequence (5.1) as

Qp(0) =, Tp(0) Lp): Tpy: +++ Cp(m): Ty Cmo - (7:1)

where M >1 and Qpy, 0< i <M, are all type (Il) regions and T’y

consists of consecutive type () regions.

Note that some Fp(i) could be empty. However, if Fp(i) # JJ, we can
write Ty = {®p(i)41s - Op(i)+r(i)}» Where each o), j is a type (I)
region and is contained in H\A ), j. Here we recall that A, j is the
component of H\'opj), j containing the fixed points of g. Hence wpj) 1

is disjoint from axis(g). By the same argument as above, for any two

successive regions mp(j)y j» ©p(i)+j+1 € Ip(i), they both are supported on
L oron R. Since elements in I'y(j) are connected by a path, we see that all

elements in I'y;) are supported on £ oron R.

By assumption, every o e I'pq) is supported on L. Let p(i +1)
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(< p(M)) be the largest integer such that either r(j) =0 for j <i orevery
op, r < p(i +1), is supported on L. Consider now the sub-collection
{Q0p) Tpgiy Qpi+nt In (7.1). If Ty =, that is, r(i) =0, then by

Lemma 5.2, Yp(it1) < Ypgiyer @nd Xp(ivy) < Xp(i)+1-

Suppose that r(i) > 0. It is known that 0A ;). projects (under the
universal covering map o : H — §) to a simple closed geodesic Vp(i)+1 on
S. Since € = o(axis(g)) is filling closed geodesic, Vp(i)+1 Must intersect C,

which means that there is a geodesic v (jy,q i {g_l(Vp(i)+1)} that intersects
axis(g). Let By(j),1 denote the angle between axis(g) and y p(j)+1. Let o)
denote the angle between axis(g) and 6A p(i)- Since OA (i) is disjoint from
{9'(y p(i)+1) - 1> 0}, by Lemma 3.4, B )41 = a(i)+1, Where a(i) is the

number that satisfies

a(0)=1, and Ba(i) < Op(i) < Ba(i)-1 forall i > 0.
Foreach j=1, .., p(i)+r(i)-1 thereis gj € G in the conjugacy class of
g such that axis(g;) intersects both 9A p(jy, j and 9A p(jy4 j+1- Let hj € G

be such that hj(axis(g;)) = axis(g). Observe that all the angle values are

invariant under h; -translations. We see that there is a geodesic y (), in

{g‘l(Vp(i)+2)} that intersects axis(g). Let Bpyi).o be the angle between

axis(g) and yp(i)+2, Which is also the angle between axis(g;) and
b (Y p(iy2)-

Evidently, yp(iy42 is disjoint from {gi(yp(i)+1) :i > 0}. Since axis(g)
is an invariant geodesic under the action of g, ()1 is also the angle

between axis(g) and any gi(yp(i)+1). Since Bp(iy+1 = da(iy+1, DY applying



240 Chaohui Zhang

Lemma 3.4 again, we see that B ()42 = 85(j)+2, and so on, this process can
continue through all elements in I'y(j), and we conclude that By, (i) 2
Sa(i)+r(i)- By applying Lemma 3.4 once again for the geodesics v (i) (i)

and OA p(j,1), We obtain

Op(i+1) = Ba(i)er(i)+ls (7.2)

where, as usual, o(j,1) denotes the angle between axis(g) and oA p(i+1)- If
r(i) =0, (7.2) becomes o p(i 1) = 34(j)+1- Hence from the definition of
a(i), we get 85(j11) = Sa(i)+r(i)+1, Which means that a(i +1) < a(i) + r(i)

+ 1. Thus, an easy computation yields the following inequality:
i-1 i-1
a(i) < ) (r(j)+1+a(0) = Y (r(j)+1) +1. (7.3)
j=0 j=0

Recall that our assumption guarantees that all members in T'yg) (if not

empty) are supported on £, and that p(i +1) is the integer such that either
r(j)=0 for j <i orevery o, r < p(i +1), are supported on £. We claim
that

Xp(i+1) < Qq(i)+1, and (7.4)
Yo(i+1) < Po(i)+1+a(i)+r(i)+1: (7.5)

where o(i) = 37 4 [r(j)/2]

We prove (7.4) by induction. First, Lemma 5.6 and Lemma 5.2 assert
that X 1) < Qs(0)+1, Where o(0) = [r(0)/2]. Suppose that X i) < Qg(i-1)+1-
If r(i) # O, then since vy is disjoint from v jy,1, and V()41 corresponds
to ©p(i)1 which is of type (), from Lemma 2.4 and Lemma 3.1, we

know that X p(i)+1: Yp(i)+1 < Qc(i—l)+1- By Lemma 5.5, X p(i)+2: Yp(i)+2 <
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Qs(i-1)+1, and so on, by the same argument of Lemma 5.6, we deduce that
Xp(i)+r() Yp@)+r() < Qo(i-1)+[r(i)/2)- It follows from Lemma 2.4 and
Lemma 3.1 that X i11) < Q(i—1)+[r(i)/2]+1- But it is easy to verify that
o(i —1) + [r(i)/2] = o(i). If r(i) = 0, then clearly, o(i —1) = o(i) and thus
Xp(i+1) < Qo(i-1)+1 = Qq(i)+1- Hence (7.4) is established. (7.5) follows from
(7.2), (7.4) and Lemma 5.4.

Rewrite (7.5) as

Ypis1) < Poi), Where A(i) = Z([@} +1(j) + 1) +2.  (7.6)

j=0

By the definition of p(i +1), we know that T'p.q) = @ (i.e. r(j +1) > 0),
and all regions in Ip(isy) are supported on R. By calculations similar to the

above, we obtain

Xp(i+2) < Qu(i+1) and Ypir2) < Pyt
where

u(i +1) = 4() + [@}

and

V(i +1) = ofi) + [@} F(r(i+1)+ 1)
By comparing the functions A, o, u and v, we find that

Mi+1)— 2 > max{o(i +1), u(i +2), v(i +1)}.

In general, for g > i +1, let n(q) = (}:o b(j) + 2, where b(j) is either

[r()/2]+ r(j) +1 or [r(j)/2] depending on whether T'y;y is supported on



242 Chaohui Zhang

L or on R. If A(q) # n(q), there is at least one jo such that I'p(j,) is

supported on R, i.e., b(jg)=[r(jp)/2] and r(jo)=1. This means that
M) —n(q) = r(jg)+1> 2. Thus we also have

Ma) =2 = n(q). (7.7)

Henceforth, by virtue of Lemma 4.4, (7.4), (7.5) and (7.7), one may
assume, without loss of generality, that B, <Yy or Qy < Xy for some
integer i (the situation where Y,y < Py and Xy < Qg is more optimal.

See Addendum). We also see that, in order to achieve the goal of minimizing
the number p(i) for which Py <Yp) or Qm < Xy, it is enough to only

estimate the smallest integer L for which B, <Y under the assumption

thatall o; in (7.1) are supported on L.

Consider here a special case where all r(i)=0for0<i<L-1 ie., (5.1)

consists of type (II) regions only prior to the region Q. Since {Xo, Yo} =
0Ag N st and i(Ug, €) = 2, by the same argument of Lemma 4.5 (ii), we see
that Yy,_1 < Py and X_1 < Qp. In particular, by Lemma 4.2, d(Viy_1, Uy )
> 2, which implies that s > m. Therefore, d-(ug, f™(ug)) > m +1. So this
scenario is not optimal.

It remains to consider the case where some r( j) = 0. We claim that P, <
Yp(L)- Suppose By =Yy ). By the same argument of Lemma 4.5, Qp, =
Xp(L) and thus Q. is adjacent to Qp,. On the other hand, since r(j)
# 0 for some j <L, from the calculation above, we deduce that X p) <

Qm- This leads to a contradiction. Hence By, # Y ) and thus By <Yp(p).

Along with (7.6), we obtain

Pm < Yp(L) < P?\.(L—l)'
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There are two cases.
Case 1. X (L) < Q- Let so be specified as in Lemma 4.5, that is, sy =
le‘;é r(j)+ L. By Lemma 4.5, we have s> sy +1= le‘;é r(j)+L+1,
which tells us that

L-1

s—L-1> ) r(j). (7.8)

=0

Let K > 0 be the number of zeros in {r(0), r(1), ..., r(L —1)}. Then K <L
—1 and there are L — K nonzero integers in {r(0), r(2), ..., r(L —1)}, which
yields the following:

L-1
D (i) =
j=0

Clearly, Py < Py(L_1) implies m < (L —1). It then follows from (7.6) that

1
{r(j):r(j)=0}>L-K. (7.9

L—
j=0

m+1<A(L—1)

-
[y

= K+_ {[@}+(r(j)+l):r(j)¢0}+2

—
Il
o

< K+2+%(Lz_:l{r(j):r(j)¢0}}+(L—K). (7.10)
j=0

Hence (7.10) and (7.8) combine to yield

m+1£K+2+M+L—K=3—;—%+ (7.11)

N

Since L > 1, we obtain

s> M (7.12)
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Case 2. X (L) > Qn. Ifall r(j) =0, by Lemma 4.5(ii), d¢(ug, Uy ) > m.

Hence one may assume that r(j) = 0 for some j. In this case, s > p(L) =

L1 .
ijor(1)+ L. Thus

L-1
L-K< > r(j)<s-L (7.13)
j=0
In particular, (7.13) implies that
1SLSS+2K. (7.14)

By assumption, r(jg) # 0 for some jy, which says r(jg)+1> 2. From the
argument similar to (7.7), (7.10) and (7.11) we conclude that

L-1
m+1<a(L-1)- 2<K+1+—[Z r(j):r(j)¢0}J+L—K. (7.15)

J:

o

It follows from (7.13), (7.14) and (7.15) that

> 2m+3.
3

(7.16)

Combining (7.12) and (7.16), we deduce that do(ug, f™(ug))=s+1>

2m +5 whenever m > 5.

In particular, when m =5, we have d.(ug, f5(u0)) > % =5. When

m = 6, we have d¢(ug, f6(uo)) > % =5.666---. So d¢(ug, f6(u0)) > 6.

When m =7, we have d(ug, f 7(uo))>g_6333 So de(ug, f'(ug))

> 7.
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Addendum

Here we consider the case in which Y h\) < By and X pvy < Q. Then

s = Z'}":O r(j)+ M, where M >1 and r(M) > 2. This simplifies to

M
s—M = r(j). (0.1)
=0

On the other hand, by a similar discussion in Case 1, we can obtain

m+1<A(M _1)+[r(2|v|)}

This gives
M-1

m+1< Z([@J+r(])+l}+2+[@}

1=0

M -1

z_r(j)J+M +2+@
j=0

IA
N w

N w

ir(j)}LM +2-r(M). (0.2)
j=0

Since r(M) > 3, (0.2) and (0.1) combine to yield

33 M

> - L (0.3)

m+1<

—3(S£M)+M+2—3=

Recall that M > 1. It follows from (0.3) that

3s M 5
= > > >
> >m+2+ > _m+2.

Hence
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