ON THE MINIMUM OF ASYMPTOTIC TRANSLATION LENGTHS OF POINT-PUSHING PSEUDO-ANOSOV MAPS

Chaohui Zhang
Department of Mathematics
Morehouse College
Atlanta, GA 30314
U. S. A.
e-mail: chaohui.zhang@morehouse.edu

Abstract

Let S be a closed Riemann surface of genus $p>1$ with one point x removed. Let \mathscr{F} be the set of mapping classes on S isotopic to the identity on $S \bigcup\{x\}$. In this paper, we show that for any genus $p>1$, the minimum $L_{\mathcal{C}}(\mathscr{F})$ of asymptotic translation lengths of all pseudo-

Anosov elements of \mathscr{F} satisfies the inequality $\frac{2}{3} \leq L_{\mathcal{C}}(\mathscr{F}) \leq 1$.

1. Introduction and Main Results

Let S be a closed Riemann surface of genus p with n points removed. Assume that $3 p-4+n>0$. One can associate to S a curve complex $\mathcal{C}(S)$ which is endowed with a path metric $d_{\mathcal{C}}$. Let $\mathcal{C}_{0}(S)$ denote the set of vertices

Received: April 6, 2016; Revised: June 24, 2016; Accepted: August 16, 2016
2010 Mathematics Subject Classification: Primary 53G35; Secondary 53F40.
Keywords and phrases: Riemann surfaces, pseudo-Anosov, Dehn twists, curve complex, filling curves

Communicated by Yasuo Matsushita
of $\mathcal{C}(S)$, which can be identified with the set of isotopy classes of simple closed curves on S. See Section 2 for the definitions and terminology.

For any $u \in \mathcal{C}_{0}(S)$, and any pseudo-Anosov map f of S, we can define $\tau_{\mathcal{C}}(f)$ as

$$
\begin{equation*}
\tau_{\mathcal{C}}(f)=\liminf _{m \rightarrow \infty} \frac{d_{\mathcal{C}}\left(u, f^{m}(u)\right)}{m} \tag{1.1}
\end{equation*}
$$

It is known that $\tau_{\mathcal{C}}(f)$ does not depend on the choice of $u \in \mathcal{C}_{0}(S)$ and is called the asymptotic translation length for the action of f on $\mathcal{C}(S)$. Bowditch [3] proved that $\tau_{\mathcal{C}}(f)$ for each pseudo-Anosov map f are rational numbers.

Let $\operatorname{Mod}(S)$ denote the mapping class group of S, and let $H \subset \operatorname{Mod}(S)$ be a subgroup. Denote by

$$
L_{\mathcal{C}}(H)=\inf \left\{\tau_{\mathcal{C}}(f): \text { for all pseudo-Anosov elements in } H\right\}
$$

By Masur-Minsky [10], there is a positive lower bound for $L_{\mathcal{C}}(H)$ that depends only on (p, n).

For a closed surface S of genus $p>1$, Theorem 1.5 of [5] asserts that

$$
L_{\mathcal{C}}(\operatorname{Mod}(S))<\frac{4 \log (2+\sqrt{3})}{p \log \left(p-\frac{1}{2}\right)}
$$

Later, Gadre-Tsai [6] improved the lower and upper bounds for $L_{\mathcal{C}}(\operatorname{Mod}(S))$ as

$$
\frac{1}{162(2 p-2)^{2}+30(2 p-2)}<L_{\mathcal{C}}(\operatorname{Mod}(S)) \leq \frac{4}{p^{2}+p-4}
$$

This particularly implies that $L_{\mathcal{C}}(\operatorname{Mod}(S)) \rightarrow 0$ as $p \rightarrow+\infty$.
The estimations of $L_{\mathcal{C}}(H)$ for certain subgroups H of $\operatorname{Mod}(S)$ were also
considered in Farb-Leininger-Margalit [5]. Let Γ_{0} denote the fundamental group of S. For any $k \geq 1$, let Γ_{k} be the k th term of the lower central series for Γ_{0}. This chain of subgroups forms a filtration. Denote by \mathscr{N}_{k} the kernel of the natural homomorphism of $\operatorname{Mod}(S)$ onto $\operatorname{Out}\left(\Gamma / \Gamma_{k}\right)$. Then for the sequence of the subgroups \mathscr{N}_{k}, Theorem 6.1 of [5] states that for any k, a similar phenomenon emerges. That is, $L_{\mathcal{C}}\left(\mathscr{N}_{k}(S)\right) \rightarrow 0$ as $p \rightarrow+\infty$.

In this paper, we are mainly concerned with the case in which S contains only one puncture x. Let $\tilde{S}=S \bigcup\{x\}$ be equipped with a hyperbolic metric. Then the subgroup $\mathscr{F} \subset \operatorname{Mod}(S)$ that consists of mapping classes projecting to the trivial mapping class on \tilde{S} is highly non-trivial and is isomorphic to the fundamental group $\pi_{1}(\tilde{S}, x)$. A topological description of this kind of mapping classes is given in [8].

It is well-known (Kra [9]) that \mathscr{F} contains infinitely many pseudoAnosov elements, and the conjugacy class of a primitive pseudo-Anosov element of \mathscr{F} can be determined by an oriented primitive filling closed geodesic \tilde{c} on \tilde{S}. Here a closed geodesic \tilde{c} is said to fill \tilde{S} if all components of $\tilde{S} \backslash\{\tilde{C}\}$ are either (topological) disks or once punctured disks, which is equivalent to that \tilde{c} intersects every simple closed geodesic on \tilde{S}.

In contrast to the above estimations for $L_{\mathcal{C}}(H)$ for various subgroups H of $\operatorname{Mod}(S)$, in the case where $H=\mathscr{F}$, we can view $L_{\mathcal{C}}(\mathscr{F})$ as a function of (p, n), and see that $L_{\mathcal{C}}(\mathscr{F})$ performs quite differently than $L_{\mathcal{C}}(\operatorname{Mod}(S))$ and $L_{\mathcal{C}}\left(\mathscr{N}_{k}(S)\right)$. The main purpose of this paper is to prove the following result.

Theorem 1.1. For any type $(p, 1)$ with $p>1, \frac{2}{3} \leq L_{\mathcal{C}}(\mathscr{F}) \leq 1$.
We may find a filling closed geodesic \tilde{c} on \tilde{S} and a vertex $\tilde{u} \in \mathcal{C}_{0}(\tilde{S})$ so that \tilde{u} intersects \tilde{c} only once. Let $u \in \mathcal{C}_{0}(S)$ be the vertex obtained from \tilde{u} by removing x. Let $f \in \mathscr{F}$ be a pseudo-Anosov element obtained from
pushing x along \tilde{c} (see Theorem 2 of [9]). We know that $\{u, f(u)\}$ forms the boundary of an x-punctured cylinder on S. This means that u and $f(u)$ are disjoint, so that $d_{\mathcal{C}}(u, f(u))=1$. By the triangle inequality and the fact that f is a homeomorphism, this gives $d_{\mathcal{C}}\left(u, f^{m}(u)\right) \leq m$ for all $m \geq 1$. It follows from (1.1) that $\tau_{\mathcal{C}}(f) \leq 1$ and thus that $L_{\mathcal{C}}(\mathscr{F}) \leq 1$. The assertion that $L_{\mathcal{C}}(\mathscr{F}) \geq \frac{2}{3}$ follows from the following result.

Theorem 1.2. Let S be of type $(p, 1)$ with $p>1$ and let $f \in \mathscr{F}$ be a pseudo-Anosov element. Then there is $u \in \mathcal{C}_{0}(S)$ such that for any integer m with $|m| \geq 1$, we have

$$
d_{\mathcal{C}}\left(u, f^{m}(u)\right) \geq \begin{cases}|m|, & \text { if }|m| \leq 7 \\ \frac{2|m|+5}{3}, & \text { if }|m|>7\end{cases}
$$

Remark 1. In [10], Masur-Minsky showed that there is a constant $c=$ $c(p, n), c>0$, such that $d_{\mathcal{C}}\left(u, f^{m}(u)\right) \geq c|m|$ for all pseudo-Anosov maps f and all $u \in \mathcal{C}_{0}(S)$. The quantitative estimation for c is, however, largely unknown.

Let \mathbf{H} be a hyperbolic plane and $\varrho: \mathbf{H} \rightarrow \tilde{S}$ the universal covering map with a covering group G. Then G is purely hyperbolic. There is an essential hyperbolic element $g \in G$ that corresponds to f (Theorem 2 of [9]). Let $\operatorname{axis}(g) \subset \mathbf{H}$ denote the axis of g; it is the invariant geodesic by the action of g.

In the case where S contains only one puncture x, all vertices u in $\mathcal{C}_{0}(S)$ are non-preperipheral, in the sense that u is homotopic to a non-trivial simple closed geodesic on \tilde{S} as x is filled in. Thus, for each vertex $u_{0} \in \mathcal{C}_{0}(S)$, there defines a configuration $\left(\tau_{0}^{\prime}, \Omega_{0}^{\prime}, \mathscr{U}_{0}^{\prime}\right)$ that corresponds to u_{0}. See Section 2 for explanations.

For a vertex $\tilde{u} \in \mathcal{C}_{0}(\tilde{S})$ and a filling geodesic \tilde{c}, the geometric intersection number, denoted by $i(\tilde{c}, \tilde{u})$, is defined as the number of intersection points between \tilde{u} and \tilde{c}, which is also given by

$$
i(\tilde{c}, \tilde{u})=\min \left|\tilde{c}^{\prime} \cap \tilde{u}^{\prime}\right|,
$$

where \tilde{c}^{\prime} and \tilde{u}^{\prime} are in the homotopy classes of \tilde{c} and \tilde{u}, respectively. Note that $\tau_{\mathcal{C}}(f)$ does not depend on the choice of $u \in \mathcal{C}_{0}(S)$. A nonpreperipheral vertex $u_{0} \in \mathcal{C}_{0}(S)$ can be selected so that $\Omega_{0}^{\prime} \cap \operatorname{axis}(g) \neq \varnothing$ and $i\left(\varrho(\operatorname{axis}(g)), \tilde{u}_{0}\right) \geq 2$.

Outline of the paper. For $m \geq 1$, let u_{m} be the geodesic homotopic to the image of u_{0} under the map f^{m}. Suppose that

$$
\begin{equation*}
\left[u_{0}, v_{1}, \ldots, v_{s}, u_{m}\right] \tag{1.2}
\end{equation*}
$$

is an arbitrary geodesic path in the 1 -skeleton of $\mathcal{C}(S)$ that connects u_{0} and u_{m} with a minimum number of sides. Then all $v_{j}, 1 \leq j \leq s$, are nonpreperipheral, which allows us to obtain the configurations $\left(\tau_{j}, \Omega_{j}, \mathscr{U}_{j}\right)$ determined by the vertices v_{j}.

Observe that the sequence $\mathbf{H} \backslash \Delta_{j}^{\prime}$ (see Figure 2 and (3.2) for the definition of Δ_{j}^{\prime}) monotonically moves down towards the attracting fixed point of g. The sequence Ω_{j} tends to move out of Δ_{m}^{\prime}. We show that if v_{j} and v_{j+1} are disjoint, then Ω_{j} and Ω_{j+1} are either adjacent or $\Omega_{j} \cap \Omega_{j+1} \neq \varnothing$. So the movement of Ω_{j} is not too fast. This means that a sufficient amount of Ω_{j} is needed to get out of Δ_{m}^{\prime}. Careful analysis shows that for any $m \geq 7$, the distance $d_{\mathcal{C}}\left(u_{0}, u_{m}\right)$ is greater than or equal to $(2 m+5) / 3$, and if $0<m<7$, then $d_{\mathcal{C}}\left(u_{0}, u_{m}\right) \geq m$. It follows that $\frac{2}{3} \leq L_{\mathcal{C}}(\mathscr{F}) \leq 1$. If m is negative and $m \leq-7$, the proof is similar.

2. Curve Complex and Tessellations in Hyperbolic Plane

Let S be a hyperbolic surface which is of type (p, n) with $3 p-4+n$ >0 and $n \geq 1$. Let x be a puncture of S and let $\tilde{S}=S \cup\{x\}$ be also equipped with a hyperbolic metric.

Due to Harvey [7], one can define the curve complex $\mathcal{C}(S)$ of dimension $3 p-4+n$ as the following simplicial complex: vertices of $\mathcal{C}(S)$ are isotopy classes of simple closed curves, and k-dimensional simplicies of $\mathcal{C}(S)$ are collections of $(k+1)$-tuples $\left\{u_{0}, u_{1}, \ldots, u_{k}\right\}$ of disjoint vertices on S, where two vertices u_{i} and u_{j} are disjoint if there exist disjoint representatives of u_{i} and u_{j}. Then $\mathcal{C}(S)$ is of finite dimensional. Let $\mathcal{C}_{k}(S)$ denote the k-skeleton of $\mathcal{C}(S)$. We then introduce a metric $d_{\mathcal{C}}$ on $\mathcal{C}(S)$, called the path metric, in the following way. First we make each simplex Euclidean with side length one, then for any vertices $u, v \in \mathcal{C}_{0}(S)$, we declare the distance $d_{\mathcal{C}}(u, v)$ between u and v to be the smallest number of edges in $\mathcal{C}_{1}(S)$ connecting u and v. It is well-known that $\mathcal{C}(S)$ is connected and is δ-hyperbolic in the sense of Gromov (Masur-Minsky [10]).

The curve complex $\mathcal{C}(\tilde{S})$ is similarly defined. Every vertex in $\mathcal{C}_{0}(S)$ or $\mathcal{C}_{0}(\tilde{S})$ can be identified with a simple closed geodesic. Let $\hat{\mathcal{C}}(S)$ be the subcomplex of $\mathcal{C}(S)$ consisting of non-preperipheral vertices. Thus, there defines a fibration $\hat{\mathcal{C}}(S) \rightarrow \mathcal{C}(\tilde{S})$ by forgetting the puncture x. According to Birman-Series [4], the union of all simple closed geodesics on \tilde{S} is not all of \tilde{S}. Whence we may choose a point x that misses every simple closed geodesic on \tilde{S}, which means that a vertex in $\mathcal{C}(\tilde{S})$ can also be regarded as a vertex on $\hat{\mathcal{C}}(S)$ (by simply removing the point x). We see that the fibration $\hat{\mathcal{C}}(S) \rightarrow \mathcal{C}(\tilde{S})$ admits a global section.

Let G be the group of covering transformations of the universal covering
map $\varrho: \mathbf{H} \rightarrow \tilde{S}$. The x-pointed mapping class group $\operatorname{Mod}_{S}^{X}$, which is defined as a group that consists of mapping classes fixing x, is a subgroup of the ordinary mapping class group $\operatorname{Mod}(S)$ with finite index n. It is wellknown (Theorem 4.1 and Theorem 4.2 of Birman [2]) that there exists an exact sequence

$$
\begin{equation*}
0 \rightarrow \pi_{1}(\tilde{S}, x) \rightarrow \operatorname{Mod}_{S}^{x} \rightarrow \operatorname{Mod}(\tilde{S}) \rightarrow 0 \tag{2.1}
\end{equation*}
$$

which defines an injective map of $\pi_{1}(\tilde{S}, x)$ into $\operatorname{Mod}_{S}^{X}$. Note that an isomorphism between G and $\pi_{1}(\tilde{S}, x)$ is obtained by choosing a lift \hat{x} of x in \mathbf{H} to serve as a base point. As such, we obtain an injective map $\psi: G$
$\rightarrow \operatorname{Mod}_{S}^{X}$.
Following Bers [1], we denote by $\mathscr{A}=\{h(\hat{x}): h \in G\} \subset \mathbf{H}$. Then \mathscr{A} is a discrete subset of \mathbf{H} invariant under the action of G. Let \dot{G} be the covering group of a universal covering map $\varrho^{\prime}: \mathbf{H} \rightarrow S$. Clearly, $\mathbf{H} / \dot{G} \cong S \cong(\mathbf{H} / G)$ $\backslash\{x\}$, and there exists an exact sequence

$$
1 \rightarrow \Gamma \rightarrow \dot{G} \rightarrow G \rightarrow 1
$$

where Γ is the covering group of a universal covering map $v: \mathbf{H} \rightarrow \mathbf{H} \backslash \mathscr{A}$.
Let $Q(G)$ (resp. $Q(\dot{G})$) be the group of quasiconformal automorphisms w of \mathbf{H} satisfying $w G w^{-1}=G$ (resp. $w \dot{G} w^{-1}=\dot{G}$). Two elements $w_{1}, w_{2} \in$ $Q(G)$ (or in $Q(\dot{G})$) are declared to be equivalent (write $w_{1} \sim w_{2}$) if $w_{1}=w_{2}$ on $\partial \mathbf{H}=\mathbf{S}^{1}$. Let $Q_{0}(\dot{G})$ denote the subgroup of $Q(\dot{G})$ consisting of maps projecting (under ϱ^{\prime}) to maps on S leaving the puncture x fixed. For any $w \in Q(G)$, there is a map $w_{0} \in Q(G)$ with $[w]=\left[w_{0}\right]$ such that $w_{0}(\mathscr{A})$ $=\mathscr{A}$. Thus w_{0} defines a map on $\mathbf{H} \backslash \mathscr{A}$, and hence w_{0} can be lifted (through $\left.\varrho^{\prime}\right)$ to a map $\omega_{0} \in Q_{0}(\dot{G})$. By Theorem 10 of [1], the map $\varphi^{*}: Q(G) / \sim \rightarrow$
$\operatorname{Mod}_{S}^{X}$ defined by sending [w] to the mapping class represented by the projection of ω_{0} under ϱ^{\prime} is an isomorphism. For simplicity we denote by $[w]^{*}=\varphi^{*}([w])$ for a $[w] \in Q(G) / \sim$. It is known that G can be regarded as a normal subgroup of $Q(G) / \sim$ so that the restriction $\varphi^{*} \mid G$ is exactly the injective map $\psi: G \rightarrow \operatorname{Mod}_{S}^{X}$. In other words, we have $\varphi^{*}(G)=\psi(G)=\mathscr{F}$. Let $h^{*} \in \mathscr{F} \subset \operatorname{Mod}_{S}^{X}$ denote the mapping class $\varphi(h)=\psi(h)$ for an $h \in G$.

Fix $\tilde{\varepsilon} \in \mathcal{C}_{0}(\tilde{S})$. Let $\left\{\varrho^{-1}(\tilde{\varepsilon})\right\}$ be the set of geodesics $\hat{\varepsilon}$ in \mathbf{H} with $\varrho(\hat{\varepsilon})$ $=\tilde{\varepsilon}$. As $\tilde{\varepsilon}$ is simple, all geodesics in $\left\{\varrho^{-1}(\tilde{\varepsilon})\right\}$ are mutually disjoint. By Theorem 2 of Kra [9], there is a bijection Φ of $\left\{\varrho^{-1}(\tilde{\varepsilon})\right\}$ onto the set \mathscr{P} of x-punctured cylinders on S whose geodesic boundary components project to $\tilde{\varepsilon}$. Two such cylinders $C, C^{\prime} \in \mathscr{P}$ are called equivalent (denoted by $C \sim C^{\prime}$) if they share one boundary component.

It is clear that $\left\{\varrho^{-1}(\widetilde{\varepsilon})\right\}$ gives rise to a partition of \mathbf{H}. Let $\mathscr{R}_{\tilde{\varepsilon}}$ denote the set of components of $\mathbf{H} \backslash\left\{\varrho^{-1}(\widetilde{\varepsilon})\right\}$. Let $t_{\tilde{\varepsilon}}$ be the positive Dehn twist along $\tilde{\varepsilon}$, which is supported in a small neighborhood $\tilde{\mathcal{N}}$ of $\tilde{\varepsilon}$. Let $\mathscr{N} \subset \mathbf{H}$ be the union of all thin neighborhoods of $\hat{\varepsilon} \in\left\{\varrho^{-1}(\tilde{\varepsilon})\right\}$ so that $\varrho(\mathscr{N})=\tilde{\mathscr{N}}$. For every $\Omega \in \mathscr{R}_{\widetilde{\varepsilon}}$, there is a lift $\tau: \mathbf{H} \rightarrow \mathbf{H}$ of $t_{\widetilde{\varepsilon}}$ so that the restriction $\left.\tau\right|_{\Omega \backslash \mathscr{N}}=$ id. It is easy to see that $\tau \in Q(G) \backslash G$ and thus $[\tau] \in(Q(G) / \sim) \backslash G$. Let $F_{\widetilde{\varepsilon}} \subset \hat{\mathcal{C}}_{0}(S)$ denote the fiber over $\widetilde{\varepsilon}$ that consists of all $u \in \hat{\mathcal{C}}_{0}(S)$ for which $\tilde{u}=\tilde{\varepsilon}$, where \tilde{u} is homotopic to u if u is viewed as a curve on \tilde{S}. By Lemma 3.2 of [13], $[\tau]^{*}$ is represented by the positive Dehn twist t_{u} along a non-preperipheral geodesic u for a $u \in F_{\tilde{\varepsilon}}$. More precisely, the argument of the lemma yields that $\Phi(\hat{c}) \sim \Phi\left(\hat{c}^{\prime}\right)$ for any two boundary components $\hat{c}, \hat{c}^{\prime} \in$ $\partial \Omega \subset\left\{\varrho^{-1}(\tilde{\varepsilon})\right\}$. The components of $\partial \Omega$ are one-to-one correspondent with
the elements in the equivalence class of $\Phi(\hat{c})$ in \mathscr{P}. Thereby we obtain for each $\tilde{\varepsilon} \in \mathcal{C}_{0}(\tilde{S})$ a well-defined surjective map

$$
\begin{equation*}
\chi_{\tilde{\varepsilon}}: \mathscr{R}_{\tilde{\varepsilon}} \rightarrow F_{\tilde{\varepsilon}} \tag{2.2}
\end{equation*}
$$

which sends Ω to u. $\chi \widetilde{\varepsilon}$ satisfies the invariance property: For every $h \in G$, we have $\tau_{h(\Omega)}=h\left(g^{-1} \tau\right) h^{-1}$. Hence

$$
\left[\tau_{h(\Omega)}\right]^{*}=\left[h\left(g^{-1} \tau\right) h^{-1}\right]^{*}=h^{*}\left[\tau_{\Omega}\right]^{*}\left(h^{*-1}\right)=t_{h^{*}(u)^{*}}
$$

Let $\Omega \in \mathscr{R} \widetilde{\varepsilon}$ be such that $\chi \tilde{\varepsilon}(\Omega)=u$ for a given $u \in F_{\widetilde{\varepsilon}}$. Observe that the complement of the closure of Ω is a disjoint union of half planes. Each such half plane Δ includes infinitely many geodesics in $\left\{\varrho^{-1}(\widetilde{\varepsilon})\right\}$, and no geodesics in $\left\{\varrho^{-1}(\widetilde{\varepsilon})\right\}$ are contained in Ω. Thus, there are infinitely many half planes contained in Δ. Let \mathscr{U} be the collection of all such half planes. Obviously \mathscr{U} is a partially ordered set defined by inclusion. Maximal elements of \mathscr{U} are called first order elements (Δ is one of them), elements of \mathscr{U} that are included in a maximal element but are not included in any other elements of \mathscr{U} are called second order elements, and so on. We call the triple ($\tau, \Omega, \mathscr{U}$) the configuration corresponding to u.

For any two vertices $u_{1}, u_{2} \in \hat{\mathcal{C}}_{0}(S)$, let $\left(\tau_{1}, \Omega_{1}, \mathscr{U}_{1}\right)$ and $\left(\tau_{2}, \Omega_{2}, \mathscr{U}_{2}\right)$ be the configurations corresponding to u_{1} and u_{2}, respectively. That is, $u_{1}=$ $\chi \tilde{\varepsilon}\left(\Omega_{1}\right)$ and $u_{2}=\chi \tilde{\varepsilon}\left(\Omega_{2}\right)$.

Lemma 2.1. Assume that there are maximal elements $\Delta_{1} \in \mathscr{U}_{1}$ and Δ_{2} $\in \mathscr{U}_{2}$ such that $\Delta_{1} \cap \Delta_{2} \neq \varnothing$ and that Δ_{1} is neither contained in Δ_{2} nor contains Δ_{2}. Then $d_{\mathcal{C}}\left(u_{1}, u_{2}\right) \geq 2$.

Proof. We are left with two cases drawn in Figures 1(a) and (b). If Figure 1(a) occurs, then since $\varrho: \mathbf{H} \rightarrow \tilde{S}$ is a local homeomorphism, \tilde{u}_{1} intersects \tilde{u}_{2}, which leads to that u_{1} intersects u_{2}.

Figure 1

If Figure 1(b) occurs, then by considering the iterations $\tau_{1}^{n} \tau_{2}^{m}$ and $\tau_{2}^{m} \tau_{1}^{n}$ on the unit circle \mathbf{S}^{1} for large n and m, from Lemma 4 of [12], we conclude that $\tau_{2}^{m} \tau_{1}^{n} \neq \tau_{1}^{n} \tau_{2}^{m}$. Thus $t_{u_{2}}^{m} \circ t_{u_{1}}^{n} \neq t_{u_{1}}^{n} \circ t_{u_{2}}^{m}$. It follows that u_{1} intersects u_{2}.

In particular, in the case where $\tilde{u}_{1}=\tilde{u}_{2}=\tilde{\varepsilon}$, i.e., u_{1}, u_{2} lie on the fiber $F_{\tilde{\varepsilon}}$, then $\Omega_{1}, \Omega_{2} \in \mathscr{R}_{\tilde{\varepsilon}}$. If $\bar{\Omega}_{1}$ is disjoint from $\bar{\Omega}_{2}$, Lemma 2.1 asserts that u_{1} intersects u_{2}. Now consider the case where Ω_{1} and $\Omega_{2} \in \mathscr{R}_{\tilde{\varepsilon}}$ are adjacent; that is, Ω_{1} and Ω_{2} share a common geodesic in \mathbf{H}.

Lemma 2.2. Let $\Omega_{1}, \Omega_{2} \in \mathscr{R}_{\tilde{\varepsilon}}$. The following are equivalent:
(i) Ω_{1} and Ω_{2} are adjacent,
(ii) $d_{\mathcal{C}}\left(u_{1}, u_{2}\right)=1$, and
(iii) $\left\{u_{1}, u_{2}\right\}$ are boundary components of an x-punctured cylinder on S.

Proof. Suppose that Ω_{1} and Ω_{2} are adjacent. Then $\Omega_{2} \subset \Delta_{1}$ for an element $\Delta_{1} \in \mathscr{U}_{1}$ and $\Omega_{2}=\Delta_{1} \backslash\left\{\right.$ all second order elements of \mathscr{U}_{1} in $\left.\Delta_{1}\right\}$. Let
$e=\bar{\Omega}_{1} \cap \bar{\Omega}_{2}$ denote the common boundary geodesic in \mathbf{H}. As usual, let τ_{i}, $i=1$, 2, be the lifts of $t \widetilde{\varepsilon}$ that is defined by Ω_{i}. Let $u_{1}=\chi \widetilde{\varepsilon}\left(\Omega_{1}\right)$ and $u_{2}=$ $\chi \tilde{\varepsilon}\left(\Omega_{2}\right)$. Let \mathscr{N}_{e} be the 1-neighborhood of e. Then \mathscr{N}_{e} is a crescent neighborhood that touches \mathbf{S}^{1} at two points $\{y, z\}$. Let $h \in G$ be the primitive simple hyperbolic element that keeps e (and hence also \mathscr{N}_{e}) invariant and has the same orientation as τ_{1}. It is easy to see that $\{y, z\}$ are fixed points of h and that $\mathscr{N}_{e} /\langle h\rangle$ is a cylinder with central geodesic $\tilde{\varepsilon}$. From Theorem 2 of [9, 11], h^{*} is represented by the spin $t_{u_{1}} \circ t_{u_{0}}^{-1}$, where we note that u_{1} and u_{0} are boundary components of an x-punctured cylinder on S.

On the other hand, by construction, $h^{-1} \tau_{1}$ leaves the identity on Ω_{2}. Clearly, Ω_{2} is the maximal region so that the restriction $h^{-1} \tau_{1} \mid \Omega_{2} \backslash \mathscr{N}$ is the identity. It follows that $h^{-1} \tau_{1}=\tau_{2}$. As such, by the construction of $\chi \tilde{\varepsilon}$, $\left[h^{-1} \tau_{1}\right]^{*}=\left[\tau_{2}\right]^{*}=t_{u_{2}}$ and $\left[\tau_{1}\right]^{*}=t_{u_{1}}$. But

$$
\left[h^{-1} \tau_{1}\right]^{*}=\left(h^{*}\right)^{-1} \circ\left[\tau_{1}\right]^{*}=t_{u_{0}} \circ t_{u_{1}}^{-1} \circ t_{u_{1}}=t_{u_{0}} .
$$

It follows that $t_{u_{0}}=t_{u_{2}}$ and thus $u_{0}=u_{2}$. Since u_{1} and u_{0} are boundary components of an x-punctured cylinder on S, u_{1} and u_{0} are disjoint. So u_{1} and u_{2} are disjoint. This particularly implies that $d_{\mathcal{C}}\left(\chi \tilde{\varepsilon}\left(\Omega_{1}\right), \chi \tilde{\varepsilon}\left(\Omega_{2}\right)\right)=1$.

Conversely, suppose that $d_{\mathcal{C}}\left(u_{1}, u_{2}\right)=1$. Since $\tilde{u}_{1}=\tilde{u}_{2}=\tilde{\varepsilon},\left\{u_{1}, u_{2}\right\}$ forms an x-punctured cylinder on S. It follows from Theorem 2 of [9, 11] that there is a simple hyperbolic element $h \in G$ such that $h^{*}=t_{u_{1}} \circ t_{u_{2}}^{-1}$. That is, $\tau_{2}=h^{-1} \tau_{1}$, which implies that Ω_{1} and Ω_{2} are adjacent. Finally, the fact that (ii) and (iii) are equivalent is obvious.

It follows from Lemma 2.2 and Lemma 2.1 that the map (2.2) is also injective. Hence we have established the following:

Lemma 2.3. The map $\chi \tilde{\varepsilon}$ defined as (2.2) is a bijection which satisfies the equivariance condition $\chi \tilde{\varepsilon}(g(\Omega))=g^{*}\left(\chi_{\tilde{\varepsilon}}(\Omega)\right)$ for any $\tilde{\varepsilon} \in \mathcal{C}_{0}(\tilde{S}), \Omega \in$ $\mathscr{R}_{\tilde{\varepsilon}}$, and $g \in G$.

Suppose now that $\Omega_{1}, \Omega_{2} \in \mathscr{R}_{\tilde{\varepsilon}}$ and $\Omega_{1} \neq \Omega_{2}$. Then Ω_{1} is disjoint from Ω_{2}. There are two cases: either Ω_{1} is adjacent to Ω_{2}, or $\bar{\Omega}_{1}$ is disjoint from $\bar{\Omega}_{2}$. If Ω_{1} is adjacent to Ω_{2}, then by Lemma $2.2, d_{\mathcal{C}}\left(u_{1}, u_{2}\right)=1$. If $\bar{\Omega}_{1}$ is disjoint from $\bar{\Omega}_{2}$, by Lemma 2.1, we have $d_{\mathcal{C}}\left(u_{1}, u_{2}\right) \geq 2$.

Remark 2. In [17], we further discussed the case where $d_{\mathcal{C}}\left(u_{1}, u_{2}\right) \geq 2$, and give a characterization for the two geodesics $u_{1}=\chi \tilde{\varepsilon}\left(\Omega_{1}\right), u_{2}=\chi \tilde{\varepsilon}\left(\Omega_{2}\right)$ to satisfy the condition $d_{\mathcal{C}}\left(u_{1}, u_{2}\right)=2$.

In the case where $\tilde{u}_{1} \neq \tilde{u}_{2}$, we have:
Lemma 2.4. Let $u_{1}, u_{2} \in \mathcal{C}_{0}(S)$ be such that $\tilde{u}_{1} \neq \tilde{u}_{2}$. The following statements are equivalent:
(i) $d_{\mathcal{C}}\left(u_{1}, u_{2}\right)=1$,
(ii) $\Omega_{1} \cap \Omega_{2} \neq \varnothing$ and $\left\{\varrho^{-1}\left(\tilde{u}_{1}\right)\right\}$ is disjoint from $\left\{\varrho^{-1}\left(\tilde{u}_{2}\right)\right\}$, and
(iii) for any maximal elements $\Delta_{1} \in \mathscr{U}_{1}$ and $\Delta_{2} \in \mathscr{U}_{2}$, either Δ_{1} and Δ_{2} are disjoint, or Δ_{1} and Δ_{2} are nested (that is, either $\Delta_{1} \subset \Delta_{2}$, or $\Delta_{2} \subset \Delta_{1}$).

Proof. If u_{1}, u_{2} are disjoint, then $\tilde{u}_{1}, \tilde{u}_{2}$ are also disjoint. Hence $\left\{\varrho^{-1}\left(\tilde{u}_{1}\right)\right\}$ and $\left\{\varrho^{-1}\left(\tilde{u}_{2}\right)\right\}$ are disjoint. The fact that $\Omega_{1} \cap \Omega_{2} \neq \varnothing$ follows from Lemma 2.1. This shows that (i) implies (ii).

To show that (ii) implies (iii), we notice that τ_{1} and τ_{2} are the lifts of $\tau_{\tilde{u}_{1}}$ and $\tau_{\tilde{u}_{1}} . \tau_{1}$ and τ_{2} determine the configurations $\left(\tau_{1}, \Omega_{1}, \mathscr{U}_{1}\right)$ and
$\left(\tau_{2}, \Omega_{2}, \mathscr{U}_{2}\right)$. Since $\left\{\varrho^{-1}\left(\tilde{u}_{1}\right)\right\}$ and $\left\{\varrho^{-1}\left(\tilde{u}_{2}\right)\right\}$ are disjoint and $\Omega_{1} \cap \Omega_{2}$ $\neq \varnothing$, (iii) is satisfied.

Finally, if (iii) holds, then $\Omega_{1} \cap \Omega_{2} \neq \varnothing$ and \tilde{u}_{1} and \tilde{u}_{2} are disjoint. If u_{1} intersects u_{2}, then we are in the situation of Figure 1(b), and we must have $\Omega_{1} \cap \Omega_{2} \neq \varnothing$. This leads to a contradiction.

Remark 3. If a maximal element $\Delta_{1} \in \mathscr{U}_{1}$ contains a maximal element of \mathscr{U}_{2}, then Δ_{1} contains infinitely many maximal elements of \mathscr{U}_{2}; but if $\Delta_{1} \in \mathscr{U}_{1}$ is contained in a maximal element Δ_{2} of \mathscr{U}_{2}, then such a Δ_{2} is unique. The same is true for maximal elements of \mathscr{U}_{2}.

Throughout the rest of the paper we assume that S is a closed hyperbolic Riemann surface minus one point x. In this case, we have $\operatorname{Mod}_{S}^{X}=\operatorname{Mod}(S)$ and $\mathcal{C}_{0}(S)=\hat{\mathcal{C}}_{0}(S)$; that is, every vertex $u \in \mathcal{C}_{0}(S)$ is non-preperipheral.

3. Partitions and Regions in Hyperbolic Plane Determined by Vertices

Let $f \in \mathscr{F}$ be a pseudo-Anosov element. By Theorem 2 of [9], there is $g \in G$ such that $g^{*}=f$ and g is an essential hyperbolic element, which means that the projection $\tilde{c}:=\varrho(\operatorname{axis}(g))$ is an oriented filling closed geodesic on \tilde{S}.

Let $\tilde{u}_{0} \in \mathcal{C}_{0}(\tilde{S})$. Then $i\left(\tilde{u}_{0}, \tilde{c}\right) \geq 1$. Choose $\Omega_{0}^{\prime} \in \mathscr{T}_{u_{0}}$ so that $\Omega_{0}^{\prime} \cap$ $\operatorname{axis}(g) \neq \varnothing$. Obviously, Ω_{0}^{\prime} determines a configuration ($\left.\tau_{0}^{\prime}, \Omega_{0}^{\prime}, \mathscr{U} \mathscr{U}_{0}^{\prime}\right)$ that corresponds to a vertex $\chi_{\tilde{u}_{0}}\left(\Omega_{0}^{\prime}\right)=u_{0} \in F_{\tilde{u}_{0}} \subset \mathcal{C}_{0}(S)$. Notice that $\tilde{c} \subset \tilde{S}$ is a filling geodesic that intersects \tilde{u}_{0}. Thus axis (g) crosses infinitely many geodesics in $\left\{\varrho^{-1}\left(\tilde{u}_{0}\right)\right\}$. This particularly implies that $\operatorname{axis}(g)$ cannot be completely included in Ω_{0}^{\prime}.

Since \tilde{u}_{0} is simple, all geodesics in $\left\{\varrho^{-1}\left(\tilde{u}_{0}\right)\right\}$ are mutually disjoint. We conclude that there are maximal elements $\Delta_{0}, \Delta_{0}^{\prime} \in \mathscr{U}_{0}^{\prime}$, which are disjoint from each other, such that $\operatorname{axis}(g)$ crosses both Δ_{0} and Δ_{0}^{\prime} and that $\Omega_{0}^{\prime} \subset$ $\mathbf{H} \backslash\left(\Delta_{0} \cup \Delta_{0}^{\prime}\right)$. We may assume that Δ_{0} and Δ_{0}^{\prime} cover the attracting and repelling fixed points $\{A, B\}$ of g, respectively. Δ_{0} and Δ_{0}^{\prime} are shown in Figure 2.

Figure 2
For each $k \geq 1$, let u_{k} denote the geodesic homotopic to the image of u_{0} under the map f^{k}. Then u_{k} is a non-preperipheral geodesic and in particular,

$$
\begin{equation*}
\left(\tau_{k}^{\prime}, \Omega_{k}^{\prime}, \mathscr{U}_{k}^{\prime}\right):=\left(g^{k} \tau_{0}^{\prime} g^{-k}, g^{k}\left(\Omega_{0}^{\prime}\right), g^{k}\left(\mathscr{U}_{0}^{\prime}\right)\right) \tag{3.1}
\end{equation*}
$$

is the configuration corresponding to u_{k}. This tells us that

$$
\begin{equation*}
\Delta_{k}^{\prime}:=g^{k}\left(\Delta_{0}^{\prime}\right) \tag{3.2}
\end{equation*}
$$

is a maximal element of \mathscr{U}_{k}^{\prime} that covers the repelling fixed point B of g. All the half planes $\left\{\Delta_{k}^{\prime}\right\}$ are also shown in Figure 2.

For any half plane $\Delta \subset \mathbf{H}$, denote by $\partial \Delta$ the boundary geodesic of Δ in H. It is obvious that for $k \geq 0$,

$$
\begin{equation*}
g\left(\partial \Delta_{k}^{\prime}\right)=\partial \Delta_{k+1}^{\prime} . \tag{3.3}
\end{equation*}
$$

For simplicity, we also write $\left\{P_{k}, Q_{k}\right\}=\mathbf{S}^{1} \cap \partial \Delta_{k}^{\prime}$. Observe that $\mathbf{S}^{1} \backslash\{A, B\}$ has two components \mathcal{L} and \mathcal{R}, where \mathcal{L} is the component containing all labeled points Q_{i} and \mathcal{R} is the component containing all labeled points P_{i}.

For any two points $X, X^{\prime} \in \mathcal{L}$, denote by $\left(X X^{\prime}\right)$ the subarc of \mathcal{L} connecting X and X^{\prime}. Likewise, let $\left(Y Y^{\prime}\right)$ denote the subarc of \mathcal{R} connecting two points $Y, Y^{\prime} \in \mathcal{R}$. Points lying on \mathcal{L} or on \mathcal{R} can be ordered as follows: we declare $X<X^{\prime}$ if and only if $(B X) \subset\left(B X^{\prime}\right) \subset \mathcal{L}$. Likewise, we say $Y<Y^{\prime}$ if and only if $(B Y) \subset\left(B Y^{\prime}\right) \subset \mathcal{R}$.

Some basic properties for the labeled points P_{k} and Q_{k} are included in the following lemma.

Lemma 3.1. We have:
(i) all P_{k} and Q_{k} are hyperbolic fixed points of G satisfying $P_{1}<P_{2}<$ $\cdots<P_{m}<\cdots$ and $Q_{1}<Q_{2}<\cdots<Q_{m}<\cdots$,
(ii) for all $k \geq 0, g\left(Q_{k}\right)=Q_{k+1}$ and $g\left(P_{k}\right)=P_{k+1}$, and more precisely,
(iii) for all $k \geq 0, g\left(Q_{k} Q_{k+1}\right)=\left(Q_{k+1} Q_{k+2}\right)$ and $g\left(P_{k} P_{k+1}\right)=\left(P_{k+1} P_{k+2}\right)$.

Proof. Notice that $\left\{P_{k}, Q_{k}\right\}=\partial \Delta_{k}^{\prime} \cap \mathbf{S}^{1}$ and $\Delta_{k}^{\prime} \in \mathscr{U}_{k}$ are maximal elements. We deduce that $\partial \Delta_{k}^{\prime}$ are axes of simple hyperbolic elements of G. It turns out that P_{k} and Q_{k} are hyperbolic fixed points of G. Since $\varrho\left(\partial \Delta_{k}^{\prime}\right)$ $=\tilde{u}_{0}$ for all $k \geq 0, \quad\left\{\partial \Delta_{k}^{\prime}: k \geq 0\right\} \subset\left\{\varrho^{-1}\left(\tilde{u}_{0}\right)\right\}$. Hence $\partial \Delta_{k+1}^{\prime}$ is disjoint from $\partial \Delta_{k}^{\prime}$ for all $k \geq 0$. (i)-(iii) follow immediately from (3.2) and (3.3).

Lemma 3.2. Let $\hat{u} \subset \mathbf{H}$ be a geodesic that divides \mathbf{H} into two half planes Δ and Δ^{\prime}. Suppose that $\varrho(\hat{u}) \subset \tilde{S}$ is a simple closed geodesic and Δ is disjoint from $\operatorname{axis}(g)$ and covers Q_{k} for some k. Then Δ cannot cover any other labeled point Q_{i}.

Proof. Since $\varrho(\hat{u}) \in \mathcal{C}_{0}(\tilde{S})$ is simple, for any $h \in G, h(\partial \Delta) \cap \partial \Delta=\varnothing$. In particular, $g(\partial \Delta) \cap \partial \Delta=\varnothing$. Consider the action of g on \mathbf{H}. For those Δ disjoint from $\operatorname{axis}(g)$, we have $g(\Delta) \cap \Delta=\varnothing$. If Δ covers Q_{k} and Q_{k+1}, and is disjoint from axis (g), then by Lemma 3.1(iii), $g(\Delta)$ covers Q_{k+1} and Q_{k+2}, which implies that $g(\Delta) \cap \Delta \neq \varnothing$, contradicting that $g(\Delta) \cap \Delta=\varnothing$.

Let $\delta_{0}=\alpha_{0}$ be the angle between $\partial \Delta_{0}^{\prime}$ and $\operatorname{axis}(g)$. Unless otherwise stated, throughout the paper the angle between $\operatorname{axis}(g)$ and a geodesic l intersecting $\operatorname{axis}(g)$ is defined as the angle through which l must be rotated (in counterclockwise direction) to make it coincide with $\operatorname{axis}(g)$. For $j \geq 1$, we let δ_{j} be the angle between $\operatorname{axis}(g)$ and the geodesic joining from Q_{0} to P_{j}. See Figure 2. We see that

$$
\cdots<\delta_{m}<\delta_{m-1}<\cdots<\delta_{1}<\delta_{0}
$$

Since g can be regarded as a Möbius transformation of \mathbf{H} which keeps $\operatorname{axis}(g)$ invariant, δ_{j} is also the angle between $\operatorname{axis}(g)$ and the geodesic joining from Q_{k} to P_{j+k} for all $k \geq 0$.

More generally, δ_{j} are invariant under Möbius transformations on \mathbf{H}. This in turn implies that for every $h \in G, \delta_{j}$ is also the angle between $h(\operatorname{axis}(g))$ and the geodesic connecting $h\left(Q_{0}\right)$ and $h\left(P_{j}\right)$.

To each geodesic \hat{u} intersecting $\operatorname{axis}(g)$, there associates an angle $\delta_{\hat{u}}$ which is defined as follows. Write $\left\{X_{\hat{u}}, Y_{\hat{u}}\right\}=\hat{u} \cap \mathbf{S}^{1}$, where $X_{\hat{u}} \in \mathcal{L}$ and $Y_{\hat{u}} \in \mathcal{R}$. Let \hat{u}^{\prime} be the geodesic connecting $Y_{\hat{u}}$ and $g^{-1}\left(X_{\hat{u}}\right)$. Then we define $\delta_{\hat{u}}$ as the angle between \hat{u}^{\prime} and $\operatorname{axis}(g)$.

Lemma 3.3. Let $\hat{v} \subset \mathbf{H}$ be a geodesic intersecting axis(g). Let $\alpha_{\hat{v}}$ denote the angle between \hat{v} and axis (g). Suppose that $\alpha_{\hat{v}}<\delta_{\hat{u}}$. Then $\left\{g^{i}(\hat{v}): i \geq 0\right\}$ intersects \hat{u}.

Proof. Suppose that $g^{i}(\hat{v})$ are disjoint from \hat{u} for all i. Then $g^{i}(\hat{u})$ are disjoint from \hat{v} for all i. Let p be the integer such that \hat{v} lies in between $g^{p}(\hat{u})$ and $g^{p+1}(\hat{u})$. See Figure 3.

It is obvious that $\alpha_{\hat{v}}$ is no smaller than the angle α between $\operatorname{axis}(g)$ and the geodesic connecting $g^{p}\left(X_{\hat{u}}\right)$ and $g^{p+1}\left(Y_{\hat{u}}\right)$. Note that g keeps axis (g) invariant. α is also the angle between $\operatorname{axis}(g)$ and the geodesic connecting $g^{-1}\left(X_{\hat{u}}\right)$ and $Y_{\hat{u}}$ which is, by the definition, is equal to $\delta_{\hat{u}}$. We thus conclude that $\alpha=\delta_{\hat{u}}$, and so $\alpha_{\hat{v}} \geq \delta_{\hat{u}}$, which contradicts the hypothesis.

Figure 3
The following lemma will be used frequently in the proof of Theorem 1.2.

Lemma 3.4. Let \hat{u}, \hat{v} be geodesics in \mathbf{H} intersecting $\operatorname{axis}(g)$. Let $\alpha_{\hat{u}}$ and $\alpha_{\hat{v}}$ be the angles between axis (g) and \hat{u} and between axis (g) and \hat{v}, respectively. Assume that $\delta_{q} \leq \alpha_{\hat{u}}<\delta_{q-1}$ for some $q \geq 1$. Then $\left\{g^{i}(\hat{v})\right.$: $i \geq 0\}$ intersects \hat{u} whenever $\alpha_{\hat{v}}<\delta_{q+1}$.

Proof. The assumption that $\delta_{q} \leq \alpha_{\hat{u}}<\delta_{q-1}$ and $\delta_{q} \geq \delta_{q+1}$ implies that $\delta_{\hat{u}} \geq \delta_{q+1}$. Since $\alpha_{\hat{v}}<\delta_{q+1}$, we have $\alpha_{\hat{v}}<\delta_{\hat{u}}$ and hence by Lemma 3.3, we conclude that $\left\{g^{i}(\hat{v}): i \geq 0\right\}$ intersects the geodesic \hat{u}.

4. Classification of Vertices of $\mathcal{C}(S)$ in Terms of Essential Hyperbolic Elements of G

For each $v \in \mathcal{C}_{0}(S), \tilde{v} \in \mathcal{C}_{0}(\tilde{S})$ is non-trivial. Let ($\tau_{v}, \Omega_{v}, \mathscr{U}_{v}$) denote the corresponding configuration. By the definition, Ω_{V} is a component of $\mathbf{H} \backslash\left\{\varrho^{-1}(\tilde{v})\right\}$. As we saw before, $\operatorname{axis}(g)$ cannot be completely contained in Ω_{v}. There are two possibilities:
(1) $\operatorname{axis}(g)$ is contained in a maximal element Δ_{v} of \mathscr{U}_{V}, or
(2) there is a pair $\left(\Delta_{V}, \Delta_{V}^{*}\right)$ of maximal elements of \mathscr{U}_{V} such that axis (g) intersects $\partial \Delta_{v}$ and $\partial \Delta_{v}^{*}$, where Δ_{v} and Δ_{v}^{*} are the maximal elements of \mathscr{U}_{V} that cover the attracting and repelling fixed points A, B of g, respectively.

By Lemma 2.1 of [14], Δ_{v}^{*} is identified with the maximal element of \mathscr{U}_{v} containing $g^{-1}\left(\mathbf{H} \backslash \Delta_{v}\right)$. In cases (1) and (2) above, we denote $\left\{X_{v}, Y_{v}\right\}=$ $\partial \Delta_{v} \cap \mathbf{S}^{1}$.

If (1) occurs, Δ_{v} covers both attracting and repelling fixed points of g. Moreover, the boundary $\partial \Delta_{v}$ is disjoint from $\operatorname{axis}(g)$. Such an Ω_{v} is referred to as a type (I) region. We say that Ω_{v} is supported on \mathcal{L} (resp. \mathcal{R}) if $\left(\mathbf{H} \backslash \Delta_{v}\right) \cap \mathbf{S}^{1} \subset \mathcal{L}$ (resp. $\left.\left(\mathbf{H} \backslash \Delta_{v}\right) \cap \mathbf{S}^{1} \subset \mathcal{R}\right)$. It is clear that for a type (I) region Ω_{v}, either $\left\{X_{v}, Y_{v}\right\} \in \mathcal{L}$ or $\left\{X_{v}, Y_{v}\right\} \in \mathcal{R}$, depending on whether Ω_{v} is supported on \mathcal{L} or on \mathcal{R}.

Let $\left\{\Delta_{k}^{\prime}\right\}$ be the half planes as defined in (3.2). It is known that Δ_{k}^{\prime} are maximal elements of \mathscr{U}_{k} '. In what follows, we write " $X_{v}, Y_{v}<Q_{k}$ " to mean that $\Omega_{v} \subset \Delta_{k}^{\prime}$ is of type (I) and is supported on \mathcal{L}. Likewise, " X_{v}, Y_{v} $<P_{k}$ " means that $\Omega_{v} \subset \Delta_{k}^{\prime}$ is of type (I) and is supported on \mathcal{R}.

In Figure 4(a), a type (I) region Ω_{v} and the maximal element $\Delta_{v} \in \mathscr{U}_{v}$ are drawn, where Ω_{v} is supported on \mathcal{L} and is contained in Δ_{k}^{\prime}. In this case, we have $X_{v}, Y_{v}<Q_{k}$.

Figure 4

If (2) occurs, then $\operatorname{axis}(g)$ crosses $\partial \Delta_{v}$ and $\partial \Delta_{v}^{*}$ and $\Omega_{v} \subset \mathbf{H} \backslash\left(\Delta_{v} \cup \Delta_{v}^{*}\right)$. Such an Ω_{v} is referred to as a type (II) region. See Figure 4(b). In this case, X_{v} and Y_{v} are separated by $\operatorname{axis}(g)$. As always, we let $X_{v} \in \mathcal{L}$ and $Y_{v} \in \mathcal{R}$. By our convention, $\Omega_{v} \subset \Delta_{k}^{\prime}$ if and only if $X_{v}<Q_{k}$ and $Y_{v}<P_{k}$.

It is known that Ω_{0}^{\prime} and Ω_{m}^{\prime} are type (II) regions. Also, in both cases (1) and (2), we remark that Δ_{v} covers the attracting fixed point A of g, while for every $k \geq 1, \Delta_{k}^{\prime}$ covers the point B, but does not cover the point A.

The result can be summarized as the following lemma for future reference:

Lemma 4.1. There exists a maximal element $\Delta_{v} \in \mathscr{U}_{v}$ with these properties:
(i) Δ_{v} covers the attracting fixed point A of g,
(ii) Δ_{v} is not contained in Δ_{k}^{\prime} for any $k \geq 0$, and
(iii) Δ_{v} is not disjoint from axis (g).

Recall that for every non-negative integer $k, u_{k} \in \mathcal{C}_{0}(S)$ is associated with the configuration $\left(\tau_{k}^{\prime}, \Omega_{k}^{\prime}, \mathscr{U}_{k}^{\prime}\right)=\left(g^{k} \tau_{0}^{\prime} g^{-k}, g^{k}\left(\Omega_{0}^{\prime}\right), g^{k}\left(\mathscr{U}_{0}^{\prime}\right)\right)$ and Δ_{k}^{\prime} $\in \mathscr{U}_{k}$ is a maximal element such that $\left\{P_{k}, Q_{k}\right\}=\partial \Delta_{k}^{\prime} \cap \mathbf{S}^{1}$.

Lemma 4.2. Let Ω_{v} be a type (II) region. Let Δ_{v} be as in Lemma 4.1. Suppose $d_{\mathcal{C}}\left(v, u_{k}\right)=1$. Then for some $k \geq 1, Q_{k} \leq X_{v}$ and $P_{k} \leq Y_{v}$ (which is equivalent to that $\Delta_{v} \subseteq \mathbf{H} \backslash \Delta_{k}^{\prime}$).

Proof. Assume that $X_{v}<Q_{k}$. By Lemma 4.1, Δ_{v} is not contained in Δ_{k}^{\prime} and $\Delta_{v} \cap \Delta_{k}^{\prime} \neq \varnothing$. If $\partial \Delta_{v} \cap \partial \Delta_{k}^{\prime} \neq \varnothing$, i.e., $P_{k}<Y_{v}$, then since $\varrho: \mathbf{H} \rightarrow \tilde{S}$ is a local homeomorphism, \tilde{v} intersects \tilde{u}_{k}. Hence v intersects u_{k} as well, and this contradicts the hypothesis.

If $Y_{v}<P_{k}$, then $\partial \Delta_{v} \cap \partial \Delta_{k}^{\prime}=\varnothing$ and $\Delta_{v} \cup \Delta_{k}^{\prime}=\mathbf{H}$. See Figure 1(b). Note that Δ_{v} and Δ_{v}^{*} cover the attracting and repelling fixed points of g, respectively, and $\Delta_{v} \cap \Delta_{k}^{*} \neq \varnothing$. From the construction, $\Omega_{v} \subset \mathbf{H} \backslash\left(\Delta_{v} \cup \Delta_{v}^{*}\right)$. Hence Ω_{v} is disjoint from $\mathbf{H} \backslash \Delta_{k}^{\prime}$. But $\Omega_{k}^{\prime} \subset \mathbf{H} \backslash \Delta_{k}^{\prime}$. We conclude that Ω_{v} is disjoint from (but not adjacent to) Ω_{k}^{\prime}. If $\tilde{v}=\tilde{u}_{k}$, that is, $\Omega_{v}, \Omega_{k}^{\prime} \in \mathscr{R}_{\tilde{v}}$, then from Lemma 2.2, $d_{\mathcal{C}}\left(v, u_{k}\right) \geq 2$. If $\tilde{v} \neq \tilde{u}_{k}$, then from Lemma 2.4, we also conclude that $d_{\mathcal{C}}\left(v, u_{k}\right) \geq 2$. The case where $Y_{v}=P_{k}$ cannot occur. Hence $Q_{k} \leq X_{v}$. The same argument also yields that $P_{k} \leq Y_{v}$.

Lemma 4.3. Let Ω_{v} be a type (I) region. Assume that $d_{\mathcal{C}}\left(v, u_{k}\right)=1$. Then $\Delta_{k}^{\prime} \subset \Delta_{V}$.

Proof. We only handle the case where Ω_{v} is supported on \mathcal{L} and show
that $Q_{k}<X_{v}$ and $Q_{k}<Y_{v}$. If $X_{v}=Q_{k}$, then $Y_{v} \neq Q_{k}$. Let $g_{k} \in G$ be a primitive hyperbolic element such that $\operatorname{axis}\left(g_{k}\right)$ is the geodesic joining P_{k} and Q_{k}. Notice that ($\tau_{v}, \Omega_{v}, \mathscr{U}_{v}$) is the configuration corresponding to v. It is apparent that $\partial \Delta_{v}$ is the axis of another primitive hyperbolic element h of G, where $h \neq g_{k}$. Since $Q_{k}=X_{v}, h$ and g_{k} share the same fixed point Q_{k}, which contradicts that G is a discrete group. We conclude that $X_{v} \neq Q_{k}$.

Suppose now that $X_{v}<Q_{k}$. If $Y_{v}=Q_{k}$, the same argument as above leads to a contradiction. If $Y_{v}<Q_{k}$, then $\bar{\Omega}_{v} \cap \bar{\Omega}_{k}=\varnothing$, contradicting that $d_{\mathcal{C}}\left(v, u_{k}\right)=1$. If $Y_{v}>Q_{k}$, then $\partial \Delta_{s}$ intersects $\partial \Delta_{k}^{\prime}$. This implies that \tilde{v} intersects $\tilde{u}_{k}=\tilde{u}_{0}$. Again, this contradicts that $d_{\mathcal{C}}\left(v, u_{k}\right)=1$. This proves $Q_{k}<X_{v}$. Similarly, one can prove $Q_{k}<Y_{v}$.

We proceed to study a geodesic path (1.2) in $\mathcal{C}_{1}(S)$ that connects u_{0} and u_{m} for any $m \geq 1$. From the definition, we know that $d_{\mathcal{C}}\left(u_{0}, v_{1}\right)=1$, $d_{\mathcal{C}}\left(v_{s}, u_{m}\right)=1$ and $d_{\mathcal{C}}\left(v_{j}, v_{j+1}\right)=1$ for $j=1, \ldots, s-1$. Since u_{0}, u_{m}, and all v_{j} are non-preperipheral, these vertices are associated with configurations. As we have seen, $\left(\tau_{0}^{\prime}, \Omega_{0}^{\prime}, \mathscr{U}_{0}^{\prime}\right)$ and $\left(\tau_{m}^{\prime}, \Omega_{m}^{\prime}, \mathscr{U}_{m}^{\prime}\right)$ are the configurations for u_{0} and u_{m}, respectively. Let $\left(\tau_{j}, \Omega_{j}, \mathscr{U}_{j}\right)$ be the configurations corresponding to those v_{j} for $j=1, \ldots$, s.

The following lemma is a direct consequence of Lemma 4.3 and Lemma 4.2 (by setting $v=v_{s}$ and $k=m$):

Lemma 4.4. With the same notation and terminology as above, we have
(i) if Ω_{s} is a type (II) region, then $P_{m} \leq Y_{s}$ and $Q_{m} \leq X_{s}$, and
(ii) if Ω_{s} is a type (I) region and is supported on \mathcal{L}, then $Q_{m}<X_{s}$ and $Q_{m}<Y_{s}$.

A question arises as to whether $\Delta_{s_{0}} \subseteq \mathbf{H} \backslash \Delta_{k}^{\prime}$ implies $s=s_{0}$. The answer to the question is negative. However, for a type (II) region $\Omega_{s_{0}}$, we have the following result.

Lemma 4.5. Let $\Omega_{s_{0}}$ be the first type (II) region in the list $\left\{\Omega_{0}=\Omega_{0}^{\prime}\right.$, $\left.\Omega_{1}, \ldots, \Omega_{s}, \Omega_{m}^{\prime}\right\}$ satisfying $P_{m} \leq Y_{s_{0}}$.
(i) If $P_{m}=Y_{s_{0}}$, then $X_{s_{0}}=Q_{m}$. In this case, $s=s_{0}$.
(ii) If $P_{m}<Y_{s_{0}}$, then $X_{s_{0}} \neq Q_{m}$. In this case, $s \geq s_{0}+1$ if $X_{s_{0}}<Q_{m}$, and $s \geq s_{0} \geq m+1$ if $X_{s_{0}}>Q_{m}$ and all regions prior to $\Omega_{s_{0}}$ are type (II) regions.

Proof. (i) If $Y_{S_{0}}=P_{m}$, by the same argument of Lemma 4.3, we conclude that $X_{s_{0}}=Q_{m}$. Thus, $\partial \Delta_{m}^{\prime}$ is a component of $\partial \Omega_{s_{0}}$, which means that all boundary components of $\Omega_{s_{0}}$ project to the same $\varrho\left(\partial \Delta_{m}^{\prime}\right)=\tilde{u}_{0}$. This in turn implies that $\Omega_{s_{0}}, \Omega_{m}^{\prime} \in \mathscr{R}_{u_{0}}$. Note that $\Omega_{s_{0}}$ and Ω_{m}^{\prime} share the common boundary component $\partial \Delta_{m}^{\prime}$. It follows that $\Omega_{s_{0}}$ is adjacent to Ω_{m}^{\prime}. Hence from Lemma 2.2, $d_{\mathcal{C}}\left(v_{s_{0}}, u_{m}\right)=1$. In particular, $v_{s_{0}}$ and u_{m} are disjoint, which says that $s=s_{0}$.
(ii) Assume that $P_{m}<Y_{S_{0}}$. Again by the same argument of Lemma 4.3, we see that $X_{s_{0}} \neq Q_{m}$. If $X_{s_{0}}<Q_{m}$, then by Lemma 4.2, $d_{\mathcal{C}}\left(v_{s_{0}}, u_{m}\right) \geq 2$. Hence $s \geq s_{0}+1$.

We now turn to the case where $Y_{S_{0}}>P_{m}, X_{s_{0}}>Q_{m}$, and all regions prior to $\Omega_{s_{0}}$ are type (II) regions. We claim that $X_{s_{0}-1}>Q_{m-1}$ and $Y_{s_{0}-1}$ $>P_{m-1}$. Indeed, the assumption says that $\Omega_{s_{0}}$ is a type (II) region. So there exist maximal elements $\Delta_{s_{0}}, \Delta_{s_{0}}^{*} \in \mathscr{U}_{s_{0}}$ so that $\Omega_{s_{0}} \subset \mathbf{H} \backslash\left(\Delta_{s_{0}} \cup \Delta_{s_{0}}^{*}\right)$,
where $\Delta_{s_{0}}^{*}$ contains the geodesic joining Q_{m-1} and P_{m-1}. In other words, we have $\Omega_{s_{0}} \cap \Delta_{m-1}^{\prime}=\varnothing$.

On the other hand, the pair $\left(\Delta_{s_{0}-1}, \Delta_{s_{0}-1}^{*}\right)$ of maximal elements of $\mathscr{U}_{s_{0}-1}$ is chosen so that $\Omega_{s_{0}-1} \subset \mathbf{H} \backslash\left(\Delta_{s_{0}-1} \cup \Delta_{s_{0}-1}^{*}\right)$. Since $\tilde{v}_{s_{0}}$ is disjoint from $\tilde{v}_{S_{0}-1}, \partial \Omega_{s_{0}-1}$ is disjoint from $\partial \Omega_{s_{0}}$. So if $X_{s_{0}-1}<Q_{m-1}$, we must have $\Omega_{s_{0}-1} \cap \Omega_{s_{0}}=\varnothing$. This contradicts Lemma 2.4, proving that $X_{s_{0}-1}>$ Q_{m-1}. Similarly, one can show that $Y_{S_{0}-1}>P_{m-1}$. By an induction argument, one similarly shows that $X_{S_{0}-j}>Q_{m-j}$ and $Y_{S_{0}-j}>P_{m-j}$ for every j with $0 \leq j \leq m$. We conclude that $s \geq s_{0} \geq m+1$.

5. Consecutive Vertices in a Geodesic Path in the Curve Complex

In this section, we investigate consecutive vertices in a geodesic $\left[u_{0}, v_{1}, \ldots, v_{s}, u_{m}\right]$ in $\mathcal{C}_{1}(S)$ connecting u_{0} and u_{m}. Consider again the sequence

$$
\begin{equation*}
\Omega_{0}=\Omega_{0}^{\prime}, \Omega_{1}, \ldots, \Omega_{s}, \Omega_{m}^{\prime} \tag{5.1}
\end{equation*}
$$

Notice that Ω_{0} and Ω_{m}^{\prime} are type (II) regions, and any other region in (5.1) is either a type (I) or a type (II) region. Unless otherwise stated, in what follows, we assume that the first type (I) region in (5.1) is supported on \mathcal{L}.

Let Ω_{j-1}, Ω_{j} be two consecutive regions in (5.1), and let $\Delta_{j} \in \mathscr{U}_{j}$ and $\Delta_{j-1} \in \mathscr{U}_{j-1}$ be the maximal elements obtained from Lemma 4.1. The geodesics $\partial \Delta_{j}$ and $\partial \Delta_{j-1}$ intersect \mathbf{S}^{1} at $\left\{X_{j}, Y_{j}\right\}$ and $\left\{X_{j-1}, Y_{j-1}\right\}$, respectively. Recall that $X_{j}, X_{j-1} \in \mathcal{L}$ and $Y_{j}, Y_{j-1} \in \mathcal{R}$.

Lemma 5.1. Assume that Ω_{j} is a type (I) region and Ω_{j-1} is a type (II) region with $X_{j-1}<Q_{k}$ and $Y_{j-1}<P_{k}$. Then $X_{j}, Y_{j}<P_{k}$ if Ω_{j} is supported on \mathcal{R}; and $X_{j}, Y_{j}<Q_{k}$ if Ω_{j} is supported on \mathcal{L}.

Proof. The condition $d_{\mathcal{C}}\left(v_{j-1}, v_{j}\right)=1$ implies that $d_{\mathcal{C}}\left(\tilde{v}_{j-1}, \tilde{v}_{j}\right)=1$. If $\tilde{v}_{j-1} \neq \tilde{v}_{j}$, by Lemma 2.4, $\Omega_{j} \cap \Omega_{j-1} \neq \varnothing$. Since $\Omega_{j-1} \subset \mathbf{H} \backslash\left(\Delta_{j-1} \cup \Delta_{j-1}^{*}\right)$ and since $\partial \Omega_{j}$ and $\partial \Omega_{j-1}$ are mutually disjoint, we deduce that $\Omega_{j} \subset$ $\mathbf{H} \backslash\left(\Delta_{j-1} \cup \Delta_{j-1}^{*}\right)$. The assumption also tells us that $\Omega_{j-1} \subset \Delta_{k}^{\prime}$, which means that $\Delta_{j-1} \cup \Delta_{k}^{\prime}=\mathbf{H}$ and $\partial \Delta_{j-1} \cap \partial \Delta_{k}^{\prime}=\varnothing$. Therefore, $\Omega_{j} \subset \Delta_{k}^{\prime}$, which says $X_{j}, Y_{j}<P_{k}$ if Ω_{j} is supported on \mathcal{R}, or $X_{j}, Y_{j}<Q_{k}$ if Ω_{j} is supported on \mathcal{L}.

If $\tilde{v}_{j-1}=\tilde{v}_{j}=\tilde{v}$, then $v_{j}, v_{j-1} \in F_{\tilde{v}}$ and thus $\Omega_{j}, \Omega_{j-1} \in \mathscr{R}_{\tilde{v}}$. By Lemma 2.2, Ω_{j} and Ω_{j-1} are adjacent. It is obvious that $\bar{\Omega}_{j} \cap \bar{\Omega}_{j-1} \neq$ $\partial \Delta_{j-1}$; otherwise, Ω_{j} is of type (II), which contradicts the hypothesis. It follows that $\Omega_{j} \subset \Delta_{k}^{\prime}$, as asserted.

Lemma 5.2. Suppose that Ω_{j-1} and Ω_{j} are both type (II) regions such that $X_{j-1}<Q_{k}$ and $Y_{j-1}<P_{k_{0}}$ for some positive integers k and k_{0}. Then $X_{j}<Q_{k+1}$ and $Y_{j}<P_{k_{0}+1}$.

Proof. The proof is essentially the same as in Lemma 4.5(ii), and the details are omitted.

Lemma 5.3. Suppose that Ω_{j-1} is a type (I) region but Ω_{j} is a type (II) region. Then $X_{j-1}, Y_{j-1}<Q_{k}$ implies that $X_{j}<Q_{k+1}$. Similarly, X_{j-1}, $Y_{j-1}<P_{k}$ implies that $Y_{j}<P_{k+1}$.

Proof. Suppose first that $\tilde{v}_{j} \neq \tilde{v}_{j-1}$ are disjoint. Notice that $\bar{\Omega}_{j}$ is in fact the complement of all maximal elements of \mathscr{U}_{j}. Since Ω_{j} is of type (II), $\Omega_{j} \subset \mathbf{H} \backslash\left(\Delta_{j} \cup \Delta_{j}^{*}\right)$, where, as usual, $\Delta_{j}^{*} \in \mathscr{U}_{j}$ denotes the maximal element that contains $g^{-1}\left(\mathbf{H} \backslash \Delta_{j}\right)$.

Suppose that $\mathbf{H} \backslash \Delta_{j}$ is not included in Δ_{k+1}^{\prime}. The condition that v_{j-1} is disjoint from v_{j} implies that all boundary components of Ω_{j} are disjoint from all boundary components of Ω_{j-1}. Note that $\Omega_{j} \subset \mathbf{H} \backslash\left(\Delta_{j} \cup \Delta_{j}^{*}\right)$ and $\Omega_{j-1} \subset \mathbf{H} \backslash\left(\Delta_{j-1} \cup \Delta_{j-1}^{*}\right)$. By Lemma 3.1 and Lemma 2.1 of [14], Ω_{j-1} must be disjoint from Ω_{j}. But this contradicts Lemma 2.4. It follows that $\mathbf{H} \backslash \Delta_{j} \subset \Delta_{k+1}^{\prime}$. Therefore, $\Omega_{j} \subset \Delta_{k+1}^{\prime}$.

Similarly, we can handle the case in which $\tilde{v}_{j}=\tilde{v}_{j-1}$.
For each type (II) region Ω_{j}, let α_{j} denote the angle between $\operatorname{axis}(g)$ and $\partial \Delta_{j}$.

Lemma 5.4. With the same condition of Lemma 5.3. Assume that X_{j-1}, $Y_{j-1}<Q_{k}$ and that $\alpha_{j} \geq \delta_{q}$ for some integer q. Then $X_{j}<Q_{k+1}$ and $Y_{j}<$ P_{k+1+q}.

Proof. By applying Lemma 5.3, we conclude that $X_{j}<Q_{k+1}$. Suppose that $P_{k+1+q}<Y_{j}<P_{k+2+q}$. Observe that δ_{q} is the angle between $\operatorname{axis}(g)$ and the geodesic joining from Q_{0} and P_{q}, which is also the angle between $\operatorname{axis}(g)$ and the geodesic joining from Q_{k+1} to P_{k+1+q}. We deduce that $Q_{k+j}<X_{j}<Q_{k+1+j}$ for some $j \geq 1$. This leads to a contradiction. It follows that $Y_{j} \leq P_{k+1+q}$. But certainly, $Y_{j} \neq P_{k+1+q}$. We conclude that $Y_{j}<P_{k+1+q}$, and hence $\Omega_{j} \subset \Delta_{k+1+q}^{\prime}$, as asserted.

We now consider the case where there are consecutive type (I) regions in the list (5.1).

Lemma 5.5. Suppose that Ω_{j-1} and Ω_{j} are both type (I) regions. Then $X_{j-1}, Y_{j-1}<Q_{k} \quad$ implies $\quad X_{j}, Y_{j}<Q_{k+1}$. Similarly, $X_{j-1}, Y_{j-1}<P_{k}$ implies $X_{j}, Y_{j}<P_{k+1}$.

Proof. Again, we only treat the case where $\tilde{v}_{j-1} \neq \tilde{v}_{j}$ are disjoint. From Lemma 2.4, we know that $\Omega_{j} \cap \Omega_{j-1} \neq \varnothing$ and all the boundary components of Ω_{j-1} are disjoint from all the boundary components of Ω_{j}. This implies that $\partial \Delta_{j}$ is disjoint from $\partial \Delta_{j-1}$. Hence either $\Delta_{j-1} \subset \Delta_{j}$ or $\Delta_{j} \subset \Delta_{j-1}$. In the former case, we have $\Omega_{j} \subset \Delta_{k}^{\prime}$.

In the later case, we consider the half plane $\mathbf{H} \backslash \Delta_{j}$ and notice that Ω_{j} $\subset \mathbf{H} \backslash \Delta_{j}$ and that $\mathbf{H} \backslash \Delta_{j}$ contains $\mathbf{H} \backslash \Delta_{j-1}$. Since Ω_{j} is a type (I) region, $\mathbf{H} \backslash \Delta_{j}$ is disjoint from $\operatorname{axis}(g)$. So if $X_{j}>Q_{k+1}$ and $X_{j-1}, Y_{j-1}<P_{k}$, then $\mathbf{H} \backslash \Delta_{j}$ would cover both Q_{k} and Q_{k+1}. But this contradicts Lemma 3.2.

Finally, if there are $r, 2 \leq r \leq j$, consecutive type (I) regions in the list (5.1), Lemma 5.5 can be extended to the following result.

Lemma 5.6. Suppose that $\Omega_{j-r+1}, \ldots, \Omega_{j}$ are r consecutive type (I) regions in the sequence (5.1) such that $X_{j-r+1}, Y_{j-r+1}<Q_{k}$. Then X_{j}, Y_{j} $<Q_{k+d}$, where $d=[r / 2]$ is the largest integer less than or equal to $r / 2$.

Proof. The assumption tells us that Ω_{j-r+1} is supported on \mathcal{L}. We claim that Ω_{j-r+2} is also supported on \mathcal{L}. Otherwise, $\bar{\Omega}_{j-r+1}$ is disjoint from $\bar{\Omega}_{j-r+2}$. By Lemma 2.4, we deduce that $d_{\mathcal{C}}\left(v_{j-r+1}, v_{j-r+2}\right) \geq 2$. This leads to a contradiction. An induction argument yields that all $\Omega_{j-r+1}, \ldots, \Omega_{j}$, must also be supported on \mathcal{L}.

The fact that $X_{j-r+2}, Y_{j-r+2}<Q_{k+1}$ follows from Lemma 5.5. Suppose $r \geq 3$ and consider the type (I) region Ω_{j-r+3} and the associated maximal element $\Delta_{j-r+3} \in \mathscr{U}_{j-r+3}$. It is clear that either $\Delta_{j-r+2} \subset \Delta_{j-r+3}$ or $\Delta_{j-r+3} \subset \Delta_{j-r+2}$. In either cases, since $\tilde{v}_{j-r+3} \in \mathcal{C}_{0}(\tilde{S})$ is simple, by Lemma 3.2, $\left(\mathbf{H} \backslash \Delta_{j-r+3}\right) \cap \mathbf{S}^{1}$ cannot cover $\left(Q_{k} Q_{k+1}\right)$, which implies
$X_{j-r+3}, Y_{j-r+3}<Q_{k+1}$. But then we must have $X_{j-r+4}, Y_{j-r+4}<Q_{k+2}$ (if $r \geq 4$). Here we notice that $\tilde{v}_{j-r+4} \in \mathcal{C}_{0}(\tilde{S})$ is a simple geodesic, and by Lemma 3.2 again, $\left(\mathbf{H} \backslash \Delta_{j-r+4}\right) \cap \mathbf{S}^{1}$ cannot cover $\left(Q_{k+1} Q_{k+2}\right)$.

It follows from an induction argument that $X_{j-r+q}, Y_{j-r+q}<Q_{k+[q / 2]}$ for $1 \leq q \leq r$. Setting $q=r$ we conclude that $X_{j}, Y_{j}<Q_{k+d}$ for $d=[r / 2]$.

6. First Three Vertices in a Geodesic Path Joining u_{0} and u_{m}

Observe that $\Omega_{0}=\Omega_{0}^{\prime}$ is a type (II) region that is contained in $\mathbf{H} \backslash\left(\Delta_{0} \cup \Delta_{0}^{\prime}\right)$. Since \tilde{u}_{0} is chosen so that $i\left(\tilde{u}_{0}, \tilde{c}\right) \geq 2, \Delta_{0} \cup \Delta_{1}^{\prime}=\mathbf{H}$ and $\partial \Delta_{0} \cap \partial \Delta_{1}^{\prime}=\varnothing$. It follows that $Y_{0}<P_{1}$ and $X_{0}<Q_{1}$.

Suppose that Ω_{1} is a type (I) region supported on \mathcal{L}. By Lemma 5.1, $X_{1}, Y_{1}<Q_{1}$. This implies $\Omega_{1} \subset \Delta_{1}^{\prime}$.

If Ω_{1} is a type (II) region, then since Ω_{0} is of type (II), by Lemma 5.2, $Y_{1}<P_{2}$ and $X_{1}<Q_{2}$. This means $\Omega_{1} \subset \Delta_{2}^{\prime}$.

By combining these two possibilities for Ω_{1}, we conclude that $\Omega_{1} \subset \Delta_{2}^{\prime}$.
Now take Ω_{2} into consideration. If both Ω_{1} and Ω_{2} are type (I) regions, then $X_{1}, Y_{1}<Q_{1}$, and by Lemma $5.5, X_{2}, Y_{2}<Q_{2}$, which says $\Omega_{2} \subset \Delta_{2}^{\prime}$.

If both Ω_{1} and Ω_{2} are type (II) regions, then by Lemma 5.2, $Y_{2}<P_{3}$ and $X_{2}<Q_{3}$, which says $\Omega_{2} \subset \Delta_{3}^{\prime}$.

If Ω_{1} is a type (II) region but Ω_{2} is a type (I) region, then by Lemma 5.1, $X_{2}, Y_{2}<P_{2}$ or $X_{2}, Y_{2}<Q_{2}$, both of which imply that $\Omega_{2} \subset \Delta_{2}^{\prime}$.

In the case where Ω_{1} is of type (I) and Ω_{2} is of type (II), we have $X_{1}, Y_{1}<Q_{1}$. By Lemma 5.3, $X_{2}<Q_{2}$. We need to rule out the possibility
that the other end Y_{2} of $\partial \Delta_{2}$ is pretty far down, such as $Y_{2} \in \mathcal{R}$ is near to the point A. Notice that $\left(\mathbf{H} \backslash \Delta_{1}\right) \cap \mathbf{S}^{1} \subset\left(Q_{0} Q_{1}\right)$.

Since S is a surface with type $(p, 1)$, we have $\mathcal{C}_{0}(S)=\hat{\mathcal{C}}_{0}(S)$, which tells us that every vertex in $\mathcal{C}_{0}(S)$ is non-preperipheral. This in turn implies that $\tilde{v}_{1} \subset \tilde{S}$ is a simple closed geodesic. Recall that $\left(\tau_{1}, \Omega_{1}, \mathscr{U}_{1}\right)$ is the configuration corresponding to v_{1}, and that $\tilde{c}=\varrho(\operatorname{axis}(g))$ is a filling closed geodesic that intersects \tilde{v}_{1}. Hence $\operatorname{axis}(g)$ intersects some geodesics in $\left\{\varrho^{-1}\left(\tilde{v}_{1}\right)\right\}$. Let $\gamma_{1} \in\left\{\varrho^{-1}\left(\tilde{v}_{1}\right)\right\}$ be such a geodesic. Since $\varrho\left(\partial \Delta_{0}^{\prime}\right)=\varrho\left(\partial \Delta_{1}^{\prime}\right)$ $=\tilde{u}_{0}$ is disjoint from $\varrho\left(\gamma_{1}\right)=\tilde{v}_{1}$ and since $\left\{\varrho^{-1}\left(\tilde{v}_{1}\right)\right\} \subset \mathbf{H}$ consists of mutually disjoint geodesics, we conclude that $g^{i}\left(\gamma_{1}\right)$ are disjoint from $\partial \Delta_{0}^{\prime}$ and $\partial \Delta_{1}^{\prime}$.

Observe also that all geodesics $g^{i}\left(\gamma_{1}\right)$ are disjoint and intersect $\operatorname{axis}(g)$. These geodesics are also disjoint from $\partial \Delta_{2}$. Let β_{1} denote the angle between $\operatorname{axis}(g)$ and γ_{1} (which is also the angle between $\operatorname{axis}(g)$ and any $g^{i}\left(\gamma_{1}\right)$), and let $\delta\left(\gamma_{1}\right)$ denote the associated angle as defined in Section 3. Then $\left[\delta\left(\gamma_{1}\right)\right]=\delta_{2}$, where we define $[\alpha]=\delta_{j+1}$ if $\delta_{j+1} \leq \alpha<\delta_{j}$. By Lemma 3.3, $\beta_{1} \geq \delta_{1}$. Thus by Lemma 3.3 again, $\alpha_{2} \geq \delta\left(\gamma_{1}\right) \geq \delta_{2}$, where we recall α_{2} is the angle between $\operatorname{axis}(g)$ and $\partial \Delta_{2}$. Since $X_{2}<Q_{2}$, by Lemma 5.4, we obtain $Y_{2}<P_{4}$. That is, $\Omega_{2} \subset \Delta_{4}^{\prime}$.

By combining all the possibilities for Ω_{1} and Ω_{2}, we conclude that Ω_{2} $\subset \Delta_{4}^{\prime}$. From Lemma 4.2 we thus obtain the following result.

Proposition 6.1. Let $u_{0} \in \mathcal{C}_{0}(S)$ and let $\left(\tau_{0}^{\prime}, \Omega_{0}^{\prime}, \mathscr{U}_{0}^{\prime}\right)$ be the corresponding configuration. Let $\tilde{c} \subset \tilde{S}$ be a filling closed geodesic determined by a pseudo-Anosov map $f=g^{*} \in \mathscr{F}$ for an essential hyperbolic element $g \in G$, with the properties that $i\left(\tilde{c}, \tilde{u}_{0}\right) \geq 2$ and $\Omega_{0}^{\prime} \cap$ $\operatorname{axis}(g) \neq \varnothing$. Then for any $m \geq 2$, any geodesic path $\left[u_{0}, v_{1}, \ldots, v_{s}, f^{m}\left(u_{0}\right)\right]$
in $\mathcal{C}(S)$ joining u_{0} and $f^{m}\left(u_{0}\right)$, we have $\Omega_{1} \subset \Delta_{2}^{\prime}$ and $\Omega_{2} \subset \Delta_{4}^{\prime}$, where Ω_{1}, Ω_{2} correspond to v_{1} and v_{2}, respectively. Consequently, it holds that $d_{\mathcal{C}}\left(u_{0}, f^{2}\left(u_{0}\right)\right) \geq 3$ and $d_{\mathcal{C}}\left(u_{0}, f^{4}\left(u_{0}\right)\right) \geq 4$.

Remark 4. In fact, for any Riemann surface S of type (p, n) with $3 p+n$ >4, the results in [14] and [16] show that for $m=3$ or $4, d_{\mathcal{C}}\left(u_{0}, f^{m}\left(u_{0}\right)\right)$ $\geq m$ for any $u_{0} \in \mathcal{C}_{0}(S)$ and any pseudo-Anosov map $f \in \mathscr{F}$.

7. Proof of Theorem 1.2

Following the notation and terminology introduced in Section 3, we know that $\tilde{c}=\varrho(\operatorname{axis}(g))$ is an oriented filling closed geodesic on \tilde{S}. Thus $i(\tilde{c}, \tilde{u}) \geq 1$ for any $\tilde{u} \in \mathcal{C}_{0}(\tilde{S})$. Choose \tilde{u}_{0} so that $i\left(\tilde{u}_{0}, \tilde{c}\right) \geq 2$.

Refer to Figure 2. A geometric observation reveals that $\partial \Delta_{0}=\partial \Delta_{1}^{\prime}$ if and only if $i\left(\tilde{u}_{0}, \tilde{c}\right)=1$. Thus the condition $i\left(\tilde{u}_{0}, \tilde{c}\right) \geq 2$ guarantees that $\partial \Delta_{0}$ lies in between $\partial \Delta_{0}^{\prime}$ and $\partial \Delta_{1}^{\prime}$. Recall that the closure of Ω_{0}^{\prime} is the complement of all maximal elements of \mathscr{U}_{0}^{\prime}. We have $\Omega_{0}^{\prime} \subset \mathbf{H} \backslash\left(\Delta_{0} \cup \Delta_{0}^{\prime}\right)$ and hence also $\Omega_{m}^{\prime} \subset \mathbf{H} \backslash \Delta_{m}^{\prime}$.

We only prove the result for $m>0$. It is trivial that $d_{\mathcal{C}}\left(u_{0}, f\left(u_{0}\right)\right) \geq 1$. By Proposition 6.1, $d_{\mathcal{C}}\left(u_{0}, f^{m}\left(u_{0}\right)\right) \geq m$ for $m=2$, 4. By Theorem 1.1 of [14], $d_{\mathcal{C}}\left(u_{0}, f^{3}\left(u_{0}\right)\right) \geq 3$. So we assume that $m \geq 5$. As in Section 3 , we assume that (1.2) is a geodesic path in $\mathcal{C}_{1}(S)$ that connects u_{0} and u_{m}. Again, let $\left(\tau_{j}, \Omega_{j}, \mathscr{U}_{j}\right)$ be the configurations corresponding to v_{j} for $j=1, \ldots$, s.

Let Δ_{s} be the component of $\mathbf{H} \backslash \bar{\Omega}_{s}$ obtained from Lemma 4.1. By Lemma 4.4, we know that $\Delta_{s} \subset \mathbf{H} \backslash \Delta_{m}^{\prime}$, which is equivalent to that $\left\{X_{s}, Y_{s}\right\}=\mathbf{S}^{1}$ $\bigcap \partial \Delta_{S}$ lies outside of $\Delta_{m}^{\prime} \cap \mathbf{S}^{1}$.

First we suppose that $\Omega_{1}, \ldots, \Omega_{s}$ in (5.1) are type (I) regions. For any two successive regions Ω_{j}, Ω_{j+1}, where $1 \leq j \leq s-1$, we denote the components of $\mathbf{H} \backslash \Omega_{j}$ and $\mathbf{H} \backslash \Omega_{j+1}$ by Δ_{j} and Δ_{j+1}, respectively, which are obtained from Lemma 4.1. Then Lemma 2.4 asserts that either $\Delta_{j} \subset$ Δ_{j+1} or $\Delta_{j+1} \subset \Delta_{j}$. As a consequence, if Ω_{j} is supported on \mathcal{L}, then so is Ω_{j+1}. We see that all Ω_{j} are supported on \mathcal{L}. It is also readily seen that $\Delta_{s} \cap \Delta_{m}^{\prime} \neq \varnothing$. By Lemma 4.2, $d_{\mathcal{C}}\left(v_{s}, u_{m}\right) \geq 2$ unless $X_{s}>Q_{m}$. Suppose that $X_{s}>Q_{m}$. Since $X_{1}, Y_{1}<Q_{1}$, from Lemma 5.6, $X_{s}<Q_{[s / 2]+1}$. It follows that $Q_{m}<X_{s}<Q_{[s / 2]+1}$. Hence $m+1 \leq[s / 2]+1 \leq s / 2+1$, which gives $s \geq 2 m$.

We assume throughout the section that there is at least one type (II) region among $\Omega_{1}, \ldots, \Omega_{s}$. We rewrite the sequence (5.1) as

$$
\begin{equation*}
\Omega_{p(0)}=\Omega_{0}^{\prime}, \Gamma_{p(0)}, \Omega_{p(1)}, \Gamma_{p(1)}, \ldots, \Omega_{p(M)}, \Gamma_{p(M)}, \Omega_{m}^{\prime} \tag{7.1}
\end{equation*}
$$

where $M \geq 1$ and $\Omega_{p(i)}, \quad 0 \leq i \leq M$, are all type (II) regions and $\Gamma_{p(i)}$ consists of consecutive type (I) regions.

Note that some $\Gamma_{p(i)}$ could be empty. However, if $\Gamma_{p(i)} \neq \varnothing$, we can write $\Gamma_{p(i)}=\left\{\omega_{p(i)+1}, \ldots, \omega_{p(i)+r(i)}\right\}$, where each $\omega_{p(i)+j}$ is a type (I) region and is contained in $\mathbf{H} \backslash \Delta_{p(i)+j}$. Here we recall that $\Delta_{p(i)+j}$ is the component of $\mathbf{H} \backslash \bar{\omega}_{p(i)+j}$ containing the fixed points of g. Hence $\omega_{p(i)+1}$ is disjoint from axis (g). By the same argument as above, for any two successive regions $\omega_{p(i)+j}, \omega_{p(i)+j+1} \in \Gamma_{p(i)}$, they both are supported on \mathcal{L} or on \mathcal{R}. Since elements in $\Gamma_{p(i)}$ are connected by a path, we see that all elements in $\Gamma_{p(i)}$ are supported on \mathcal{L} or on \mathcal{R}.

By assumption, every $\omega \in \Gamma_{p(0)}$ is supported on \mathcal{L}. Let $p(i+1)$
$(\leq p(M))$ be the largest integer such that either $r(j)=0$ for $j \leq i$ or every $\omega_{r}, r<p(i+1)$, is supported on \mathcal{L}. Consider now the sub-collection $\left\{\Omega_{p(i)}, \Gamma_{p(i)}, \Omega_{p(i+1)}\right\}$ in (7.1). If $\Gamma_{p(i)}=\varnothing$; that is, $r(i)=0$, then by Lemma 5.2, $Y_{p(i+1)}<Y_{p(i)+1}$ and $X_{p(i+1)}<X_{p(i)+1}$.

Suppose that $r(i)>0$. It is known that $\partial \Delta_{p(i)+1}$ projects (under the universal covering map $\varrho: \mathbf{H} \rightarrow \tilde{S}$) to a simple closed geodesic $\widetilde{v}_{p(i)+1}$ on \tilde{S}. Since $\tilde{c}=\varrho(\operatorname{axis}(g))$ is filling closed geodesic, $\tilde{v}_{p(i)+1}$ must intersect \tilde{c}, which means that there is a geodesic $\gamma_{p(i)+1}$ in $\left\{\varrho^{-1}\left(\tilde{v}_{p(i)+1}\right)\right\}$ that intersects $\operatorname{axis}(g)$. Let $\beta_{p(i)+1}$ denote the angle between axis (g) and $\gamma_{p(i)+1}$. Let $\alpha_{p(i)}$ denote the angle between $\operatorname{axis}(g)$ and $\partial \Delta_{p(i)}$. Since $\partial \Delta_{p(i)}$ is disjoint from $\left\{g^{i}\left(\gamma_{p(i)+1}\right): i \geq 0\right\}$, by Lemma 3.4, $\beta_{p(i)+1} \geq \delta_{a(i)+1}$, where $a(i)$ is the number that satisfies

$$
a(0)=1, \text { and } \delta_{a(i)} \leq \alpha_{p(i)} \leq \delta_{a(i)-1} \text { for all } i \geq 0
$$

For each $j=1, \ldots, p(i)+r(i)-1$, there is $g_{j} \in G$ in the conjugacy class of g such that $\operatorname{axis}\left(g_{j}\right)$ intersects both $\partial \Delta_{p(i)+j}$ and $\partial \Delta_{p(i)+j+1}$. Let $h_{j} \in G$ be such that $h_{j}\left(\operatorname{axis}\left(g_{j}\right)\right)=\operatorname{axis}(g)$. Observe that all the angle values are invariant under h_{j}-translations. We see that there is a geodesic $\gamma_{p(i)+2}$ in $\left\{\varrho^{-1}\left(\tilde{v}_{p(i)+2}\right)\right\}$ that intersects $\operatorname{axis}(g)$. Let $\beta_{p(i)+2}$ be the angle between $\operatorname{axis}(g)$ and $\gamma_{p(i)+2}$, which is also the angle between $\operatorname{axis}\left(g_{1}\right)$ and $h_{1}^{-1}\left(\gamma_{p(i)+2}\right)$.

Evidently, $\gamma_{p(i)+2}$ is disjoint from $\left\{g^{i}\left(\gamma_{p(i)+1}\right): i \geq 0\right\}$. Since axis (g) is an invariant geodesic under the action of $g, \beta_{p(i)+1}$ is also the angle between axis (g) and any $g^{i}\left(\gamma_{p(i)+1}\right)$. Since $\beta_{p(i)+1} \geq \delta_{a(i)+1}$, by applying

Lemma 3.4 again, we see that $\beta_{p(i)+2} \geq \delta_{a(i)+2}$, and so on, this process can continue through all elements in $\Gamma_{p(i)}$, and we conclude that $\beta_{p(i)+r(i)} \geq$ $\delta_{a(i)+r(i)}$. By applying Lemma 3.4 once again for the geodesics $\gamma_{p(i)+r(i)}$ and $\partial \Delta_{p(i+1)}$, we obtain

$$
\begin{equation*}
\alpha_{p(i+1)} \geq \delta_{a(i)+r(i)+1} \tag{7.2}
\end{equation*}
$$

where, as usual, $\alpha_{p(i+1)}$ denotes the angle between $\operatorname{axis}(g)$ and $\partial \Delta_{p(i+1)}$. If $r(i)=0$, (7.2) becomes $\alpha_{p(i+1)} \geq \delta_{a(i)+1}$. Hence from the definition of $a(i)$, we get $\delta_{a(i+1)} \geq \delta_{a(i)+r(i)+1}$, which means that $a(i+1) \leq a(i)+r(i)$ +1 . Thus, an easy computation yields the following inequality:

$$
\begin{equation*}
a(i) \leq \sum_{j=0}^{i-1}(r(j)+1)+a(0)=\sum_{j=0}^{i-1}(r(j)+1)+1 . \tag{7.3}
\end{equation*}
$$

Recall that our assumption guarantees that all members in $\Gamma_{p(0)}$ (if not empty) are supported on \mathcal{L}, and that $p(i+1)$ is the integer such that either $r(j)=0$ for $j \leq i$ or every $\omega_{r}, r<p(i+1)$, are supported on \mathcal{L}. We claim that

$$
\begin{align*}
& X_{p(i+1)}<Q_{\sigma(i)+1}, \text { and } \tag{7.4}\\
& Y_{p(i+1)}<P_{\sigma(i)+1+a(i)+r(i)+1} \tag{7.5}
\end{align*}
$$

where $\sigma(i)=\sum_{j=0}^{i}[r(j) / 2]$.
We prove (7.4) by induction. First, Lemma 5.6 and Lemma 5.2 assert that $X_{p(1)}<Q_{\sigma(0)+1}$, where $\sigma(0)=[r(0) / 2]$. Suppose that $X_{p(i)}<Q_{\sigma(i-1)+1}$. If $r(i) \neq 0$, then since $v_{p(i)}$ is disjoint from $v_{p(i)+1}$, and $v_{p(i)+1}$ corresponds to $\omega_{p(i)+1}$ which is of type (I), from Lemma 2.4 and Lemma 3.1, we know that $X_{p(i)+1}, Y_{p(i)+1}<Q_{\sigma(i-1)+1}$. By Lemma 5.5, $X_{p(i)+2}, Y_{p(i)+2}<$
$Q_{\sigma(i-1)+1}$, and so on, by the same argument of Lemma 5.6, we deduce that $X_{p(i)+r(i)}, Y_{p(i)+r(i)}<Q_{\sigma(i-1)+[r(i) / 2]}$. It follows from Lemma 2.4 and Lemma 3.1 that $X_{p(i+1)}<Q_{\sigma(i-1)+[r(i) / 2]+1}$. But it is easy to verify that $\sigma(i-1)+[r(i) / 2]=\sigma(i)$. If $r(i)=0$, then clearly, $\sigma(i-1)=\sigma(i)$ and thus $X_{p(i+1)}<Q_{\sigma(i-1)+1}=Q_{\sigma(i)+1}$. Hence (7.4) is established. (7.5) follows from (7.2), (7.4) and Lemma 5.4.

Rewrite (7.5) as

$$
\begin{equation*}
Y_{p(i+1)}<P_{\lambda(i)} \text {, where } \lambda(i)=\sum_{j=0}^{i}\left(\left[\frac{r(j)}{2}\right]+r(j)+1\right)+2 \text {. } \tag{7.6}
\end{equation*}
$$

By the definition of $p(i+1)$, we know that $\Gamma_{p(i+1)} \neq \varnothing$ (i.e. $r(j+1)>0$), and all regions in $\Gamma_{p(i+1)}$ are supported on \mathcal{R}. By calculations similar to the above, we obtain

$$
X_{p(i+2)}<Q_{v(i+1)} \text { and } Y_{p(i+2)}<P_{\mu(i+1)}
$$

where

$$
\mu(i+1)=\lambda(i)+\left[\frac{r(i+1)}{2}\right]
$$

and

$$
v(i+1)=\sigma(i)+\left[\frac{r(i+1)}{2}\right]+(r(i+1)+1) .
$$

By comparing the functions λ, σ, μ and v, we find that

$$
\lambda(i+1)-2 \geq \max \{\sigma(i+1), \mu(i+1), v(i+1)\} .
$$

In general, for $q \geq i+1$, let $\eta(q)=\sum_{j=0}^{q} b(j)+2$, where $b(j)$ is either $[r(j) / 2]+r(j)+1$ or $[r(j) / 2]$ depending on whether $\Gamma_{p(j)}$ is supported on
\mathcal{L} or on \mathcal{R}. If $\lambda(q) \neq \eta(q)$, there is at least one j_{0} such that $\Gamma_{p\left(j_{0}\right)}$ is supported on \mathcal{R}, i.e., $b\left(j_{0}\right)=\left[r\left(j_{0}\right) / 2\right]$ and $r\left(j_{0}\right) \geq 1$. This means that $\lambda(q)-\eta(q) \geq r\left(j_{0}\right)+1 \geq 2$. Thus we also have

$$
\begin{equation*}
\lambda(q)-2 \geq \eta(q) \tag{7.7}
\end{equation*}
$$

Henceforth, by virtue of Lemma 4.4, (7.4), (7.5) and (7.7), one may assume, without loss of generality, that $P_{m} \leq Y_{p(i)}$ or $Q_{m} \leq X_{p(i)}$ for some integer i (the situation where $Y_{p(M)}<P_{m}$ and $X_{p(M)}<Q_{m}$ is more optimal. See Addendum). We also see that, in order to achieve the goal of minimizing the number $p(i)$ for which $P_{m} \leq Y_{p(i)}$ or $Q_{m} \leq X_{p(i)}$, it is enough to only estimate the smallest integer L for which $P_{m} \leq Y_{p(L)}$ under the assumption that all ω_{j} in (7.1) are supported on \mathcal{L}.

Consider here a special case where all $r(i)=0$ for $0 \leq i \leq L-1$; i.e., (5.1) consists of type (II) regions only prior to the region $\Omega_{p(L)}$. Since $\left\{X_{0}, Y_{0}\right\}=$ $\partial \Delta_{0} \cap \mathbf{S}^{1}$ and $i\left(\tilde{u}_{0}, \tilde{c}\right) \geq 2$, by the same argument of Lemma 4.5 (ii), we see that $Y_{m-1}<P_{m}$ and $X_{m-1}<Q_{m}$. In particular, by Lemma 4.2, $d_{\mathcal{C}}\left(v_{m-1}, u_{m}\right)$ ≥ 2, which implies that $s \geq m$. Therefore, $d_{\mathcal{C}}\left(u_{0}, f^{m}\left(u_{0}\right)\right) \geq m+1$. So this scenario is not optimal.

It remains to consider the case where some $r(j) \neq 0$. We claim that $P_{m}<$ $Y_{p(L)}$. Suppose $P_{m}=Y_{p(L)}$. By the same argument of Lemma 4.5, $Q_{m}=$ $X_{p(L)}$ and thus $\Omega_{p(L)}$ is adjacent to Ω_{m}^{\prime}. On the other hand, since $r(j)$ $\neq 0$ for some $j<L$, from the calculation above, we deduce that $X_{p(L)}<$ Q_{m}. This leads to a contradiction. Hence $P_{m} \neq Y_{p(L)}$ and thus $P_{m}<Y_{p(L)}$.

Along with (7.6), we obtain

$$
P_{m}<Y_{p(L)}<P_{\lambda(L-1)} .
$$

There are two cases.
Case 1. $X_{p(L)}<Q_{m}$. Let s_{0} be specified as in Lemma 4.5, that is, $s_{0}=$ $\sum_{j=0}^{L-1} r(j)+L$. By Lemma 4.5, we have $s \geq s_{0}+1=\sum_{j=0}^{L-1} r(j)+L+1$, which tells us that

$$
\begin{equation*}
s-L-1 \geq \sum_{j=0}^{L-1} r(j) \tag{7.8}
\end{equation*}
$$

Let $K>0$ be the number of zeros in $\{r(0), r(1), \ldots, r(L-1)\}$. Then $K \leq L$ -1 and there are $L-K$ nonzero integers in $\{r(0), r(1), \ldots, r(L-1)\}$, which yields the following:

$$
\begin{equation*}
\sum_{j=0}^{L-1} r(j)=\sum_{j=0}^{L-1}\{r(j): r(j) \neq 0\} \geq L-K . \tag{7.9}
\end{equation*}
$$

Clearly, $P_{m}<P_{\lambda(L-1)}$ implies $m<\lambda(L-1)$. It then follows from (7.6) that

$$
\begin{align*}
m+1 & \leq \lambda(L-1) \\
& =K+\sum_{j=0}^{L-1}\left\{\left[\frac{r(j)}{2}\right]+(r(j)+1): r(j) \neq 0\right\}+2 \\
& \leq K+2+\frac{3}{2}\left(\sum_{j=0}^{L-1}\{r(j): r(j) \neq 0\}\right)+(L-K) . \tag{7.10}
\end{align*}
$$

Hence (7.10) and (7.8) combine to yield

$$
\begin{equation*}
m+1 \leq K+2+\frac{3(s-L-1)}{2}+L-K=\frac{3 s}{2}-\frac{L}{2}+\frac{1}{2} . \tag{7.11}
\end{equation*}
$$

Since $L \geq 1$, we obtain

$$
\begin{equation*}
s \geq \frac{2(m+1)}{3} \tag{7.12}
\end{equation*}
$$

Case 2. $X_{p(L)}>Q_{m}$. If all $r(j)=0$, by Lemma 4.5(ii), $d_{\mathcal{C}}\left(u_{0}, u_{m}\right)>m$. Hence one may assume that $r(j) \neq 0$ for some j. In this case, $s \geq p(L)=$ $\sum_{j=0}^{L-1} r(j)+L$. Thus

$$
\begin{equation*}
L-K \leq \sum_{j=0}^{L-1} r(j) \leq s-L \tag{7.13}
\end{equation*}
$$

In particular, (7.13) implies that

$$
\begin{equation*}
1 \leq L \leq \frac{s+K}{2} \tag{7.14}
\end{equation*}
$$

By assumption, $r\left(j_{0}\right) \neq 0$ for some j_{0}, which says $r\left(j_{0}\right)+1 \geq 2$. From the argument similar to (7.7), (7.10) and (7.11) we conclude that

$$
\begin{equation*}
m+1 \leq \lambda(L-1)-2 \leq K+1+\frac{3}{2}\left(\sum_{j=0}^{L-1}\{r(j): r(j) \neq 0\}\right)+L-K \tag{7.15}
\end{equation*}
$$

It follows from (7.13), (7.14) and (7.15) that

$$
\begin{equation*}
s \geq \frac{2 m+3}{3} . \tag{7.16}
\end{equation*}
$$

Combining (7.12) and (7.16), we deduce that $d_{\mathcal{C}}\left(u_{0}, f^{m}\left(u_{0}\right)\right)=s+1 \geq$ $\frac{2 m+5}{3}$ whenever $m \geq 5$.

In particular, when $m=5$, we have $d_{\mathcal{C}}\left(u_{0}, f^{5}\left(u_{0}\right)\right) \geq \frac{15}{3}=5$. When $m=6$, we have $d_{\mathcal{C}}\left(u_{0}, f^{6}\left(u_{0}\right)\right) \geq \frac{17}{3}=5.666 \cdots$. So $d_{\mathcal{C}}\left(u_{0}, f^{6}\left(u_{0}\right)\right) \geq 6$. When $m=7$, we have $d_{\mathcal{C}}\left(u_{0}, f^{7}\left(u_{0}\right)\right) \geq \frac{19}{3}=6.333 \cdots$. So $d_{\mathcal{C}}\left(u_{0}, f^{7}\left(u_{0}\right)\right)$ ≥ 7.

Addendum

Here we consider the case in which $Y_{p(M)}<P_{m}$ and $X_{p(M)}<Q_{m}$. Then $s=\sum_{j=0}^{M} r(j)+M$, where $M \geq 1$ and $r(M)>2$. This simplifies to

$$
\begin{equation*}
s-M=\sum_{j=0}^{M} r(j) . \tag{0.1}
\end{equation*}
$$

On the other hand, by a similar discussion in Case 1, we can obtain

$$
m+1 \leq \lambda(M-1)+\left[\frac{r(M)}{2}\right] .
$$

This gives

$$
\begin{align*}
m+1 & \leq \sum_{j=0}^{M-1}\left(\left[\frac{r(j)}{2}\right]+r(j)+1\right)+2+\left[\frac{r(M)}{2}\right] \\
& \leq \frac{3}{2}\left(\sum_{j=0}^{M-1} r(j)\right)+M+2+\frac{r(M)}{2} \\
& =\frac{3}{2}\left(\sum_{j=0}^{M} r(j)\right)+M+2-r(M) . \tag{0.2}
\end{align*}
$$

Since $r(M) \geq 3$, (0.2) and (0.1) combine to yield

$$
\begin{equation*}
m+1 \leq \frac{3(s-M)}{2}+M+2-3=\frac{3 s}{2}-\frac{M}{2}-1 . \tag{0.3}
\end{equation*}
$$

Recall that $M \geq 1$. It follows from (0.3) that

$$
\frac{3 s}{2} \geq m+2+\frac{M}{2} \geq m+\frac{5}{2} .
$$

Hence

$$
s \geq \frac{2 m+5}{3} \text {. }
$$

Acknowledgment

The author is grateful to the referees for their insights, careful reading of this paper and for their helpful comments and suggestions.

References

[1] L. Bers, Fiber spaces over Teichmüller spaces, Acta Math. 130 (1973), 89-126.
[2] J. S. Birman, Braids, links and mapping class groups, Ann. of Math. Studies, No. 82, Princeton University Press, 1974.
[3] B. Bowditch, Tight geodesics in the curve complex, Invent. Math. 171 (2008), 281-300.
[4] J. S. Birman and C. Series, Geodesics with bounded intersection number on surfaces are sparsely distributed, Topology 24 (1985), 217-225.
[5] B. Farb, C. Leininger and D. Margalit, The lower central series and pseudoAnosov dilatations, Amer. J. Math. 130 (2008), 799-827.
[6] V. Gadre and C.-Y. Tsai, Minimal pseudo-Anosov translation lengths on the complex of curves, Geometry and Topology 15(3) (2011), 1297-1312.
[7] W. J. Harvey, Boundary structure of the modular group, Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, Vol. 97 of Ann. of Math. Stud., pp. 245-251, Princeton Univ. Press, Princeton, N.J., 1981.
[8] R. P. Kent, C. Leininger and S. Schleimer, Trees and mapping class groups, 2007. arXiv/math/0611241.
[9] I. Kra, On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces, Acta Math. 146 (1981), 231-270.
[10] H. Masur and Y. Minsky, Geometry of the complex of curves I: hyperbolicity, Invent. Math. 138 (1999), 103-149.
[11] S. Nag, Non-geodesic discs embedded in Teichmüller spaces, Amer. J. Math. 104 (1982), 339-408.
[12] C. Zhang, Commuting mapping classes and their actions on the circle at infinity, Acta Math. Senica 52 (2009), 471-482.
[13] C. Zhang, Pseudo-Anosov maps and fixed points of boundary homeomorphisms compatible with a Fuchsian group, Osaka J. Math. 46 (2009), 783-798.
[14] C. Zhang, Pseudo-Anosov maps and pairs of filling simple closed geodesics on Riemann surfaces, Tokyo J. Math. 35 (2012), 469-482.
[15] C. Zhang, Invariant Teichmüller disks under hyperbolic mapping classes, Hiroshima Math. J. 42 (2012), 169-187.
[16] C. Zhang, On distances between curves in the curve complex and point-pushing pseudo-Anosov homeomorphisms, JP J. Geometry and Topology 12(2) (2012), 173-206.
[17] C. Zhang, Point-pushing pseudo-Anosov mapping classes and their actions on the curve complex, JP J. Geometry and Topology 16(2) (2014), 97-125.

