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Abstract 

This work considers the Liouville equation, the sinh-Gordon equation 
and special form of Zhiber-Shabat equation, arising in mathematical 
biology. The extended sine-cosine method has been used in order to 
obtain multiple exact special solutions. The proposed scheme can be 
applied to a wider class of nonlinear equations. 

1. Introduction 

Many phenomena in physics and other fields such as biology, chemistry, 
and mechanics are described by nonlinear partial differential equations 
(NLPDEs). 

As mathematical models of the phenomena, the investigation of exact 
solutions of NLPDEs will help one to understand these phenomena better. 
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Also, the explicit formulas may provide information and help us to 
understand the mechanism of related models. 

In recent years, many powerful and efficient methods to find analytic 
solutions of nonlinear equations have been presented by a diverse group            
of scientists. These methods include the standard tanh and extended                 
tanh methods [14-16, 20], the standard and extended sine-cosine methods              
[18, 19, 21], the secP-tanhp method [3], the standard exp-function method    
and extended F-expansion method [5], the ( )( )xf−exp -expansion method 

[10], the Adomian decomposition method [9], the Jacobi elliptic function 
expansion method [8], Hirota’s bilinear transformation [22], the ( )GG′ -

expansion method, the modified simple equation method [6, 7], the 
reproducing kernel method [2], and the functional variable method [4]. 
Practically, there is no unified method that can be used to handle all types of 
nonlinear problems which arise in phenomena. 

This work is related with the class of nonlinear partial equations 

( ) ,0=+ ufuxt  (1) 

which plays a significant role in mathematical biology and many scientific 
applications such as solid state physics, nonlinear optics, plasma physics, 
fluid dynamics, dislocations in crystals, kink dynamics, and chemical 
kinetics, quantum field theory, the propagation of fluxions in Josephson 
junctions [1, 5-7, 10-17]. The function ( )uf  takes many forms such as 

( )






 +
=

−

−

.
,

,

u

u

uu

qe
pe

qepe
uf  

The first and second one characterize the sinh-Gordon equation when 
,1,1 −== qp  and the Liouville equation when ,1=p  respectively. The 

third characterizes a special case of the Zhiber-Shabat equation. 
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The nonlinear Zhiber-Shabat equation takes the form 

,02 =+++ −− uuu
xt reqepeu  (2) 

where p, q and r are arbitrary constants. 

In this paper, the extended sine-cosine method is used to solve equation 
(1) and also equation (2). The mentioned method is based on the explicit 
linearization of NLEEs for travelling waves with a certain substitution which 
leads to a second-order differential equation with constant coefficients. 
Moreover, the algorithm that was used here is also a computerized method,          
in which generated algebraic system is solved with computer packages. 

The aim of this paper is to derive more exact solitons, travelling wave 
and exponential solutions of the sinh-Gordon equation, the Liouville 
equation, and their general forms, and Zhiber-Shabat equation when 0=p  

and .0=r  

The extended sine-cosine method presented in [18, 19, 21] will be 
employed to solve these equations. 

Some entirely new exact solutions of the Liouville, sinh-Gordon and the 
Zhiber-Shabat equations are obtained. 

The rest of the paper is organized as follows: in Section 2, we describe 
briefly the extended sine-cosine method and the way it is used to derive the 
solutions of nonlinear PDEs. In Section 3, the method mentioned in Section 2 
is used to find the exact solutions of the sinh-Gordon equation and its general 
form. In Section 4, the method has been applied to the Liouville equation    
and its general form. In Section 5, the method is used to find the exact 
solutions of the Zhiber-Shabat equation when 0=p  and .0=r  Conclusion 

is provided in the last Section 6. 

2. Outline of Extended sine-cosine Method 

This section aims to outline the use of the extended sine-cosine method 
to solve the nonlinear partial differential equations (PDEs) based on the 



Sana’a A. Zarea 216 

method given in [18, 19, 21]. Given nonlinear PDE in two independent 
variables 

( ) ,0,,,,, =…xtxxxt uuuuuP  (3) 

where P is in general nonlinear function of its variables, the subscripts denote 
the partial derivatives. The main steps of this method are as follows: 

Step 1. Upon using new variables ( ) ( ),,, ξ=+=ξ utxuwtkx  where         

k and w are arbitrary constants, equation (3) can be carried into ordinary 
differential equations (ODEs) in one independent variable 

( ) ,0,,, =′′′ …uuuQ  (4) 

where Q is a polynomial in ( )ξu  and its total derivative, while prime denotes 

derivative with respect to .ξ  Equation (4) is then integrated as long as all 

derivatives, where the associated integration constants can be determined. 

Step 2. Suppose the travelling wave solution of equation (4) can be 
expressed as follows: 

( ) ( ) ( )( )∑
=

ξ=ζ=
M

i

i
i vaUtxu

0
,,  (5) 

where Miai ...,,2,1,0, =  are constants to be determined and ( )ξ= vv  

satisfies a nonlinear ordinary differential equation of the first order 

.1,,,2 ±=ε∈+ε=
ξ

=′ Rbabvad
dvv  (6) 

Equation (6) has the following general solutions of seven kinds: 

( ) ( ) ,1,0,0,sinh 0 ±=ε>>ξ+ξε=ζ babb
av  (7a) 

( ) ( ) ,1,0,0,sin 0 =ε<>ξ+ξ−
−

=ζ babb
av  (7b) 
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( ) ( ) ,1,0,0,cos 0 −=ε<>ξ+ξ−
−

=ζ babb
av  (7c) 

( ) ( ) ,1,0,0,cosh 0 ±=ε><ξ+ξ−=ζ babb
av  (7d) 

( ) ( ) ,1,0,0,0 ±=ε>==ζ ξ+ξε baev b  (7e) 

( ) ( ) ( ) ,1,0,0,cossin 0201 ±=ε<=ξ+ξ−+ξ+ξ−=ζ babcbcv  (7f) 

( ) ( ) ,1,0,0,0 ±=ε=>ξ+ξε=ζ baav  (7g) 

where 0ξ  is an arbitrary constant and the multiple special solutions of 

nonlinear PDE (3) are obtained by using (5) and (7). 

Step 3. The balance constant M can be selected by the analysis of the 
leading term. 

Step 4. Substituting (5) into (4), using (6), and collecting all the terms of 

the same power …,3,2,1,0, =ivi  and equating them to zero, a system of 

nonlinear algebraic equations on kbaMiai ,,,...,,2,1,0, =  and w is 

obtained which can be solved by Maple or Mathematica to get all the 
constants kbaMiai ,,,...,,2,1,0, =  and w. 

Step 5. Substituting these values and the solutions of equation (7) into 
equation (5), the exact solutions of equation (3) is obtained. 

3. The General sinh-Gordon Equation 

First, we consider the general form of the sinh-Gordon equation. Let 
0=r  in equation (2). Then  

.0=++ −uu
xt qepeu  (8) 

Apply the extended sine-cosine method. 
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Step 1. Let us consider the travelling wave solutions ( ) ( ),, ξ= Utxu  

.wtkx +=ξ  Then equation (8) becomes 

.0=++′′ −uu qepeukw  (9) 

Applying the Painlevé property: 

,uev =  or ( ),ln vu =  (10) 

and we get ,1 vvu ′=′  and ( ) .11 2
2 v

v
vvu ′−′′=′′  Equation (9) turns to 

( ( ) ) .032 =++′−′′ qvpvvvvwk  (11) 

Step 2. Suppose that the solution of equation (11) can be expressed by a 
polynomial in terms of v as in (5). 

Step 3. By the analysis of the leading term, we select the balance 
constant .1=M  Thus, the extended sine-cosine method gives the finite 
expansion 

( ) ( ) ., 10 vaaUtxu +=ξ=  (12) 

Step 4. Substituting (12) into (11) and using equation (6), we get 

2
1

2
0

33
1

22
1011

2
00

3
0 33 ζ−ζ−+++++ kwvaakwaapvapvaaqvapvaaqapa  

,023
1

222
1

22
0

2
10 =ζ−ζ+ζ−ζ+ bkwvabkwvabkwvabkwvaa  

and with ,12 =ζ  equating each coefficient of this polynomial to zero          

yields a set of simultaneous algebraic equations for pwkaa ,,,, 10  and q as 

follows: 

( ) ,0: 00
3
0

0 =−+ kwaaqapav  

( ) ,03: 10111
2
0

1 =+−+ akwbakwaaqapaav  

( ) ,03: 2
10

2
10

2 =+− kwbakwbapaav  

( ) .0: 1
3
1

3 =− kwbapav  (13) 
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Solving system (13), with the aid of Mathematica, we get the following: 

bkw
qakwabkw

qakwa −±=−−= 2,2 10  and ( )
( ) ,4

2

qakw
kwbp

−
=  (14) 

where 0>−
bkw

qakw  and .0≠bkw  

Step 5. By combining equations (7a)-(7g), (14) and (12), we obtain the  
following: 

Case 1. 

(i) .0,0 >> ba  This gives the soliton solutions 

( ) ( ),sinh22, 0ξ++−±−−= wtkxbb
a

bkw
qakw

bkw
qakwtxv  

where k, w are two arbitrary real parameters such that 0>− qakw  and 

,0>kw  or 0<− qakw  and .0<kw  

In view of these results, and noting that ( ) ( ),,ln, txvtxu =  we obtain 

the soliton solutions: 

( ) ( ) ,sinh22ln, 0 






 ξ++−±−−= wtkxbb
a

bkw
qakw

bkw
qakwtxu  

where k, w are two arbitrary real parameters such that qakw >  and ,0>kw  

or qakw <  and ,0<kw  and 0ξ  is an arbitrary constant. 

(ii) .0,0 >< ba  This gives the soliton solutions 

( ) ( ) ,cosh22ln, 0 







ξ++−−±−−= wtkxbb

a
bkw

qakw
bkw

qakwtxu  

where qakw >  and ,0>kw  or qakw <  and ,0<kw  and 0ξ  is an 

arbitrary constant. 
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Case 2. 

.0,0 <> ba  This gives the travelling wave solutions 

( ) ( ) ,sin22ln, 0 






 ξ++−
−

−±−−= wtkxbb
a

bkw
qakw

bkw
qakwtxu  

where qakw >  and ,0<kw  or qakw <  and ,0>kw  and 0ξ  is an 

arbitrary constant, and 

( ) ( ) ,cos22ln, 0 






 ξ++−
−

−±−−= wtkxbb
a

bkw
qakw

bkw
qakwtxu  

where qakw >  and ,0<kw  or qakw <  and ,0>kw  and 0ξ  is an 

arbitrary constant. 

Case 3. 

.0,0 >= ba  This gives the exponential solutions 

( ) ( ) ,22ln, 0 






 −±= ξ++± wtkxbebkw
q

bkw
qtxu  

where 0>q  and ,0<kw  or 0<q  and ,0>kw  and 0ξ  is an arbitrary 

constant. 

Case 4. 

.0,0 <= ba  This gives the travelling wave solutions 

( )txu ,  

( ( ) ( )) ,cossin22ln 0201 







ξ++−+ξ++−−±= wtkxbcwtkxbcbkw

q
bkw

q  

where 0>q  and ,0>kw  or 0<q  and 1,0 ckw <  and 2c  are arbitrary real 

constants, and 0ξ  is an arbitrary constant. 

Now, consider the sinh-Gordon equation 

.0=−+ −uu
xt eeu  (15) 
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As stated before, by using Step 1 of extended sine-cosine method and              
the Painlevé property (10), equation (14) is reduced to the following ordinary 
differential equations: 

( ( ) ) .032 =++′−′′ vvvvvwk  (16) 

Now, we use Step 2 of extended sine-cosine method. 

Suppose that the solution of equation (16) can be expressed by a 
polynomial in terms of v as in (5). Through Step 3 to Step 5, we get, by the 
analysis of the leading term, the balance constant .1=M  Thus, the extended 
sine-cosine method gives the finite expansion 

( ) ( ) ., 10 vaaUtxu +=ξ=  (17) 

Substituting (17) into (16), using equation (6), and equating each 
coefficient of this polynomial to zero yields a set of simultaneous algebraic 
equations for determining kbaaa ,,,, 10  and w as in nonlinear system (13) 

with ,1=p  .1−=q  Solving the new system with the aid of Mathematica, 

the following was found: 

kw
aakw

ab 4
4,

4
1

2
1 +−

==  and ,2

2
1

0
aa −=  (18) 

where ,01 ≠a  and .0≠kw  

By combining equations (7a), (7g), (18) and (17), we obtain the 
following: 

Case 1. 

(i) .0,0 >> ba  This gives the soliton solutions 

( ) ( ) ,sinh
4

4
2ln, 0

2
1

2
1

4
1

1
2
1














ξ++

+−
±−= wtkxkw

a
a

aaatxu  

where 0>kw  and ,2 1a>−  or ,21 >a  and 0ξ  is an arbitrary constant. 
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(ii) .0,0 >< ba  This gives the soliton solutions 

( ) ( ) ,cosh
4

4
2ln, 0

2
1

2
1

4
1

1
2
1














ξ++

+−
−+−= wtkxkw

a
a

aaatxu  

where 0>kw  and ,22 1 <<− a  and 0ξ  is an arbitrary constant. 

Case 2. 

.0,0 <> ba  This gives the travelling wave solutions 

( ) ( ) ,sin
4

4
2ln, 0

2
1

2
1

4
1

1
2
1














ξ++−+−−+−= wtkxkw

a
a

aaatxu  

where 0<kw  and ,22 1 <<− a  and 0ξ  is an arbitrary constant, and 

( ) ( ) ,cos
4

4
2ln, 0

2
1

2
1

4
1

1
2
1














ξ++−+−−+−= wtkxkw

a
a

aaatxu  

where 0<kw  and ,22 1 <<− a  and 0ξ  is an arbitrary constant. 

Case 3. 

(i) ,0=a  .0>b  This gives the exponential solutions 

( ) (
( )

),21ln, 0
2 ξ++±

±−=
wtkxkwetxu  

where ,0>kw  and 0ξ  is an arbitrary constant. 

(ii) .0<b  This gives the travelling wave solutions 

( )txu ,  

( ) ( ) ,2cos2sin21ln 0201 














 ξ++−+ξ++−±−= wtkxkwcwtkxkwc  

,0<kw  1c  and 2c  are arbitrary real constants, and 0ξ  is an arbitrary 

constant. 
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4. The General Form of Liouville Equation 

For the nonlinear Zhiber-Shabat equation (2), if p is an arbitrary 
constant, 0=q  and ,0=r  then 

.0=+ u
xt peu  (19) 

As stated before, by using Step 1 of extended sine-cosine method and the 
Painlevé property (10), equation (19) is reduced to the following ordinary 
differential equation: 

.0=+′′ upeuwk  (20) 

Applying the Painlevé property (10), equation (20) turns to 

( ( ) ) .032 =+′−′′ pvvvvwk  (21) 

Now, use Step 2 of extended sine-cosine method. Suppose that the 
solution of equation (19) can be expressed by a polynomial in terms of v as 
in (5). Then through Step 3 to Step 5, we get, by the analysis of the leading 
term, the balance constant .1=M  Thus, the extended sine-cosine method 
gives the finite expansion 

( ) ( ) ., 10 vaaUtxu +=ξ=  (22) 

Substituting (22) into (21) and using equation (6), and equating each 
coefficient of this polynomial to zero yields a set of simultaneous algebraic 
equations for determining bawkaa ,,,,, 01  and p as follows: 

( ) ,0: 0
3
0

0 =− kwaapav  

( ) ,03: 1011
2
0

1 =+− akwbakwaapaav  

( ) ,03: 2
10

2
10

2 =+− kwbakwbapaav  

( ) .0: 1
3
1

3 =− kwbapav  (23) 
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Solving the system (23), we get the following: 

kw
paakw

pab 4,
4
1

2
1 ==  and ,2

2
1

0
aa −=  (24) 

where ,0≠kw  p and 1a  are left as free parameters. 

In view of these results, note that ( ) ( ).,ln, txvtxu =  

However, for ,00 >a  we obtain the solutions as follows: 

Case 1. 

.0,0 >> ba  This gives the soliton solutions 

( ) ( ) ,sinh42ln, 0
2
1

2
1

1
2
1














ξ++±−= wtkxkw

paaaatxu  

where 0>kw  and ,0>p  or 0<kw  and ,0<p  and 0ξ  is an arbitrary 

constant. 

Case 2. 

.0,0 <> ba  This gives the travelling wave solutions 

( ) ( ) ,sin42ln, 0
2
1

2
1

1
2
1














ξ++−+−= wtkxkw

paaaatxu  

where 0<kw  and ,0>p  or 0>kw  and ,0<p  and 0ξ  is an arbitrary 

constant. 

5. Solution of Equation 0=+ −u
xt qeu  

For the nonlinear Zhiber-Shabat equation (2), if q is an arbitrary 
constant, 0=p  and ,0=r  then 

.0=+ −u
xt qeu  (25) 
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As stated before, by using Step 1 of the extended sine-cosine method and 
Painlevé property (10), equation (25) is reduced to the following ordinary 
differential equations: 

( ( ) ) .02 =+′−′′ qvvvvwk  (26) 

Next, use Step 2 of the extended sine-cosine method. Suppose that the 
solution of equation (26) can be expressed by a polynomial in terms of v as 
in (5). 

By the analysis of the leading term, the balance constant .2=M  Thus, 
the extended sine-cosine method gives the finite expansion 

( ) ( ) ., 2
210 vavaaUtxu ++=ξ=  (27) 

Substituting (27) into (26), using equation (6), and equating each 
coefficient of this polynomial to zero yields a set of simultaneous algebraic 
equations for determining wkbaaaa ,,,,,, 210  and q as follows: 

( ) ,02: 2000
0 =+− kwaaakwaaqav  

( ) ,02: 102111
1 =++− akwbaakwaakwaaqav  

( ) ,042: 20
2
10

2
222

2 =++−+− bkwaakwbabkwakwaakwaaqav  

( ) ,05: 211
3 =+− bakwabkwav  

( ) .04: 2
22

4 =+− kwbabkwav  (28) 

Solving equation (25), with the aid of Mathematica, we get the 
following: 

First: for ,4
1

2 =a  

,01 =a  and 0,0,,,2
0 ≠≠= wkbakw

qa  and q are arbitrary constants, 

and we obtain the following as solutions. 
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Case 1. 

(i) .0,0 >> ba  This gives the soliton solutions 

( ) ( ) ,sinh2
4
1ln,

2

00 



















 ξ+++= wtkxbbkw
qatxu  

where 0>kw  and ,0>q  or 0<kw  and ,0<q  0a  and 0ξ  are arbitrary 

constants. 

(ii) .0,0 >< ba  This gives the soliton solutions 

( ) ( ) ,cosh2
4
1ln,

2

00 




















ξ++−+= wtkxbbkw

qatxu  

where 0>kw  and ,0<q  or 0<kw  and ,0>q  0a  and 0ξ  are arbitrary 

constants. 

Case 2. 

.0,0 <> ba  This gives the travelling wave solutions 

( ) ( ) ,sin2
4
1ln,

2

00 



















 ξ++−
−

+= wtkxbbkw
qatxu  

where 0>kw  and ,0>q  or 0<kw  and ,0<q  0a  and 0ξ  are arbitrary 

constants, and 

( ) ( ) ,cos2
4
1ln,

2

00 



















 ξ++−
−

+= wtkxbbkw
qatxu  

where 0>kw  and ,0>q  or 0<kw  and ,0<q  0a  and 0ξ  are arbitrary 

constants. 

Case 3. 

.0,0 => ba  This gives the solutions as 

( ) ( ) ,2
4
1ln,

2

00 



















 ξ++±= wtkxkw
qatxu  
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where 0>kw  and ,0>q  or 0<kw  and ,0<q  0a  and 0ξ  are arbitrary 

constants. 

Second: for ,02 =a  

,kw
qa =  and 0,0,,,0 10 ≠≠= wkaab  and q are arbitrary constants, 

we obtain the following solution: 

( ) ( ) ,ln, 010 














 ξ++±= wtkxkw
qaatxu  

where 0>kw  and ,0>q  or 0<kw  and ,0<q  0a  and 0ξ  are arbitrary 

constants. 

It is interesting to point out that the extended sine-cosine method does 
not work in the Zhiber-Shabat equation when .0≠r  

6. Conclusion 

In this paper, the extended sine-cosine method was applied to obtain the 
new forms of solitons, travelling wave and exponential solutions for the         
sinh-Gordon equation, the Liouville equation and the Zhiber-Shabat equation 
when 0== rp  arising in mathematical biology. We also obtained some 

different solutions at the same time. The method can be applied to many 
other nonlinear equations or systems. In addition, this method is also 
computerizable. 
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