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Abstract

The multidimensional [td-Volterra integral equations arise in many
problems such as exponential population growth model with several
independent white noise sources. In this paper, we obtain stochastic
operational matrix of rationalized Haar functions on interva [0, 1) to
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solve m-dimensional stochastic It6-Volterra integral equations. By
using rationalized Haar functions and their stochastic operational
matrix of integration, m-dimensional stochastic Ito-Volterra integral
equation can be reduced to a linear system which can be directly
solved by Gaussian elimination method. This scheme is applied for
some numerical examples in the population growth. The results show
the efficiency and accuracy of the method.

1. Introduction

We know that stochastic It6-Volterra integral equations arise in many
problems in mechanics, finance, biology, medical, social sciences, etc. So
the study of such problems is very useful in application and there is an
increasing demand for studying the behavior of a number of sophisticated
dynamical systems in physical, medical and social sciences, as well as in
engineering and finance. These systems are often dependent on a noise
source, on a Gaussian white noise, for example, governed by certain
probability laws. So that modeling such phenomena naturally requires the
use of various stochastic differential equations [1-7] or, in more complicated
cases, stochastic Ito-Volterra and It6-Volterra-Fredholm integral equations
and stochastic integro-differential equations [7-17]. Because in many
problems such equations of course cannot be solved explicitly, it is
important, to find their approximate solutions by using some numerical
methods [1-5, 13-15].

Many orthogonal functions or polynomials, such as block pulse
functions, hybrid functions, Haar wavelet, Legendre wavelet, Coifman
wavelet, Shannon wavelet, Daubechies wavelet, and Bernestein polynomials,
were used to derive solutions of different integral equations [18-29]. Here we
use the rationalized Haar wavelet and stochastic integration operational
matrix for deriving solution of m-dimensional stochastic It6-Volterra integral
equation.

So, consider the following m-dimensional linear stochastic It6-Volterra
integral equation:

X@0)= £+ O’b(z, DX(s)ds + Y [ O’Gi(t, $)X(s)dBi(s), t <0, T),
i=1
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where X(¢), f(¢), b(t, s) and o;(¢, s),i =1, 2, .., m, for ¢, s € [0, T), are
the stochastic processes defined on the same probability space (Q, F, P),
and X(¢) is an unknown function. Also, B(¢) = (By(t), By(¢), ..., B,,(t)) is

m-dimensional Brownian motion and jéci(t, s)X(s)dB;(s), i =1, 2, ..., m,
are the It0 integrals.

This paper is organized as follows: in Section 2, we describe the basic
properties of the rationalized Haar functions and functions approximation by
rationalized Haar functions and integration operational matrix. In Section 3,
we obtain the stochastic integration operational matrix. In Section 4, we
solve stochastic Ito-Volterra integral equations with several independent
white noise sources by using stochastic integration operational matrix. In
Section 5, we examine the efficiency and accuracy of this method by giving
some numerical examples in the population growth. Finally, Section 6 gives
some brief conclusion.

2. Rationalized Haar Functions (RHFs)

The goal of this section is to recall notations and definition of the
rationalized Haar functions and to recall some known results and formulas
that are important for this paper. These have been discussed thoroughly in
[21, 22].

2.1. Definition

The rationalized Haar functions (RHFs) are defined as:

1
- J=>
1 J .13t< .2,
2! 2!
|
RH(r, t) = 4 J_§<t<i (1)
20
0 otherwise,
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where
r=2"4j-1 i=01273,., j=123..,2".
RH(0, t) is defined for i = j = 0 and is given by
RH(0,7)=1, 0<¢<]l, )

with orthogonality property

1 =i —
Jmmﬁmmuwzz for r =, 3)
0 0 for r # v,
where
v=2"+m-1, n=01,2,3 ..m=12273..,2"

2.2. Functions approximation

A function f(¢) defined over the interval ¢ € [0, 1) may be expanded in
RHFs as

a0
f@6) =" f,RH(r, 1), )
r=0
where f,.,r =0,1, 2, ..., are given by
.ol
S =2[ SORHG b, )
with r=2"+j—1for i=0,1,23, ., j=123,..,2 and r =0 for
i=j=0.
If welet i=0,1,2,.., a, then the infinite series in equation (4) is

truncated up to its first £ terms as

k-1
J@)=Y RH(r, 1) = FTo() = @ () F, (©6)

r=0

where k = 2% 0 =0,1, 2, ...
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The vectors of F and ®(¢) are defined as
F = (f()a fia ooy fk—l)Ta (7)

q)(t) = ((I)O([)’ (I)l(t)’ o0y (I)k—l(t))T’ (I)r([) = RH(}", l), r= 05 15 29 () k—1. (8)

Let k(z, s) e L2([0, 1) x [0, 1)). It can be similarly expanded with respect
to RHFs such as

k-1 k-1
k(t’ S)zzzkrvd)r(t)d)v(s): (DT(t)KcD(S)’ ©)

r=0v=0
where K = (k) > and &y, for r =0,1,2, .., k=1,v=0,1,2,.., k-1,

is given by
n 1pel
k., = 2" j . j K )00, (), in =012

The first eight RHFs can be written in matrix form as

o)) (1 1 1 1 1 1 1 1
(| |11 1 1 4 -1 4
@] (11 -1 -1 0o o0 o0 0
by = b _fo 0o 0o 0o 1 1 - - (10)
b)) |1 -1 0 0 0 0 0 0
ds()] |0 0 1 -1 0 0 0 O
)] [0 0 0o o0 1 -1 0 0
@) o o o o o o 1 -1

In equation (10), the row denotes the order of the Haar function. The

matrix @, can be expressed as

b= o o) o)

and using equation (6), we get
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YOV ENNENIC™S

From equations (9) and (12), we have
A _ T 5a—
K = (k) Kby, 13)
where

s ; 2A-1 2p-1
K = (klp)kxk’ klp = k(T, T), l, p = 1, 2, 3, ceey k,

and so

ol = jSﬁ;ﬁk ‘diag(1,1,2,2,2%,...,22,23,..,23, ., g 5). (14)

22 23 A
2
2.3. The product operational matrix
The rationalized Haar product matrix is defined by [22]
Wik (1) = DD (0). (15)

Furthermore, by (1) and (2), we get
Po(1)dg (1) = do(t). ¢ =0,1,2, ... k-1,

and for p < ¢, we can write
(1) 0y (1)

0y(¢) if ¢, (¢)occursduring the first positive half waveof ¢ ,(¢),
=1-04(t) if ¢, (¢)occursduring the second negative half waveof ¢ ,(¢),

0 otherwise.

(16)

Also, the square of any RHFs is a block pulse function, with magnitude
of 1 during both the positive and negative half waves of RHFs. Thus, we get



Numerical Solution of m-dimensional Stochastic Ito-Volterra ... 195

Pgxs(?)
do 01 b2 93 4 s b6 b7
o1 &0 ¢ 03 4 s —b6 —b7
02 02 ¢O;¢l 0 4 —0s 0 0
o930 LU 0 b 7
|04 04 0 0 w 0 0 0
¢s 05 —¢s 0 0 w 0 0
b6 —06 O b6 0 0 w 0
¢7-¢7 0~y 0 0 0 w
(17)
In general, we have
[EOMNCIO
Wit (1) = o7 (18)
k

where
Wi (t) = o),

H(k}{%)(’) = Cﬁ(ﬁjx(gj 'diag(¢§(f)a ¢§+1(1)5 e O (1)),

2 2 2

-1

D(k)x(ﬁj(t) = diag[é)(ﬁjx(ﬁ) (o (2), 1), .., ¢§_1(t))T]T-

2 2 2 2

Furthermore, by multiplying the matrix Wj,;(¢) by the vector F in

equation (7), we obtain

Yk (OF = Fpd(0), (19)
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N { 5K4) f(s)x(s)} .
Y TEHE)

ﬁixl(t) = fO’

o Ji-1)s

2

G(E) (kj = (i)(k)x(kj ~diag(fr» fr

2 2 2 7 2

é(ij(ﬁ) = diag(f%, f%”’ fk_1)-é>@j (ﬁ)

2)\2 2 (2

[)(ﬁjx(ﬁ) = diag[(fo. fis s fg_l) ' (i)(k)){kj]-

272 2 )2

2.4. Integration operational matrix

Consider the following approximation:
t
j | @(s)ds = PO(0), 21)

with operational matrix of integration

MOTOENOT |
o

where @, =1 and By = %

Pexke = (22)

2k

So, we can write

j ; f(s)ds = J' ;FT @(s)ds =~ FT PD(t). (23)
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Also, the integration of cross product of two RH function vectors is
t T ~
j (@O0 ()i = D, (24)

where D is diagonal matrix given by

N U U SO S I

~ . 1
D= dlag(l, 1, E, E, 22 y o 5 y 23 5 eeny 23, veey Za 5 eeey 2_CX)

2? 2} 2%
3. Stochastic Integration Operational Matrix

Here we would like to compute the Itd integral for each ¢,.(¢),
r=20,1,2,.., k—1. To illustrate the calculation procedures, first, let o. = 0

or k = 2. Using equations (1) and (2), we get

1 1
2 < =
B() 0_t<2,

t
do(s)dB(s) = B(t) = (25)
'[0 B(%) % <t <],
t B(t) 0<i<3
[ oaB =1 1

~ (26)

We can rewrite (25) and (26), in terms of the RHFs ¢ () and ¢;(¢), as

follows:

j ; D(s)dB(s) = SO(7), 27)
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where 2 x 2 stochastic operational matrix of integration is given by

o ) ) ]

oa)- o) ola) oAa)eols)-2)

For convenience, consider

el
Z 2i —1 2 A3
oy = Z B( 5 j p=1272%2 .,k
L
p
q=12234,..,p, (29)

and
Bog =0pg =0y it P=12252% Lk g=1,234,.,p-1 (30
By using equations (29) and (30), S,,, is written by
o P21

1
S == . 31
22 2 621 + 23(%) A — 23(%) ( )

Now, we choose a =1 or k£ = 4. Using equations (1) and (2), we get

the following consecutive relations:

B(%) 0£z<%,
3 1,1
[ bots)as(s) = Bio) = ) a=ee (2)
o) Leied
B(%) %£z<1,
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[ ors)aB(s) =

[, #2()a8(s)

[, #(s)aB(s) =

B(¢)

23@ _ B()

(e}
IA
~
A

IN
~
VAN
W | —

IA
~
AN
—_

199

(33)

(34
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1
< =
0 0<r< >
5 1 1 3
~ ~— |- B| = — < —
B(g) B(2) 7= t < 2 (35)
3 1 7 3
— |- — | = — — <
23(4) B(Zj B(Sj 7= t<1.

We can rewrite (32)-(35), in terms of the RHFs ¢(¢), ¢;(¢), ¢»(¢) and
d3(¢), as follows:

[ O’cp(s)dB(s) ~ S0(t), (36)

where 4 x 4 stochastic operational matrix of integration is given by

Saxa
o B 2Bar 2Ba3
1 Py + 455 any - 455 | 2By 2,
Tor-sfl)eoll) oes(ll) mufl) o
VA R I R
(37

In general, we have

Skxklr(ij(zj ”(’;)x@}

(38)



Numerical Solution of m-dimensional Stochastic [t6-Volterra ... 201

RO
) ( %) is the same matrix S( ﬁj [ k), with this difference that all

where 5( k
2 2

3 X

coefficients 3(2;;1), for p=1,2, 2%, 23,...%, i=1,2,3 .. p are

doubled. Namely, for k£ = 2, 4, we have

A oy P21
Crxa = 2850 = 1 1) |
By + 43@ oy — 43(5)
Cung = 4844
ap Ba1 2By 243
Bar + 83(%) o — 83(%) 2B4 —2By43
: By — 43(5 N 123(%) By + 43(5 - 43&) 2005, — 83&] 0 ,
Bas - 43(9 ; 4BG) B+ 43(9 - 43(% 0 200y — 8B(%)
and so

Vix1 = Bo1 + 23(%),
Bar — 2B(lj + 63(9 Par + 23(%) + 23(%)

Baz — 2B (1) + 23(%) —PBaz + ZB(%) + 6B(%j ,

\]

Vaxa =

[\
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Vaxa
i) el meell) o
o) )-(3) b o fd) o)
oos{gofi ) ool 0 meeli)d)|
ool el o mee()efl

So, the Itd integral of every function f(z) can be approximated as

follows:

t t
j S (s)dB(s) = jo FTd(s)dB(s) = FTS(r). (39)
4. Solving m-dimensional Stochastic It6-Volterra Integral
Equations by Using Stochastic Operational Matrix

Consider the following linear stochastic Itd-Volterra integral equation

with several independent white noise sources:
t Mot
X(0)= 1)+ [ bt )X(s)ds + 3 [ ot $)X(s)dBi(s). 1 €[0.1).(40)
i=1

Our problem is to determine block pulse coefficient of X(z), where
X(t), f(¢), b(t,s) and o;(t,s), i=1,2,..,m, for t,s €[0,1), are the
stochastic processes defined on the same probability space (Q, F, P). Also,

B(t) = (By(¢), By(2), ..., B,,(t)) is m-dimensional Brownian motion and
Iéci(t, s)X(s)dB;(s), i =1, 2, ..., m, are the It0 integrals.
By using (6) and (9), we have consecutive approximations as:
X(t)= xTo@) = o' (1) X,

F@&)=FTo@) = oT()F,
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b(t, s) = ®T (£) BD(s) = ®7 (s) BT d(¢),

o;(t, 5) = 0T (1)2,0(s) = DT ()= (1), i=12, .., m.

In the above approximations, X and F' are the RHFs coefficient stochastic
vectors, and B and X;,i =1, 2, ..., m are the RHFs coefficient stochastic

matrices.

With substituting above approximations in equation (40), we get

xTo@) = Flo@) + xT U;qa(s)cpT (s)dsjBT @(r)

+ xT (i U; D(s)d" (s)dBi(s)jEiT }D(t). (1)

i=l
Let b; be the jth column of the constant matrix B, p;; be the jth column

of the constant matrix X;, p; be the ith row of the integration operational
matrix P, and s; be the jth row of the stochastic integration operational

matrix S;.

To illustrate the calculation procedures, we choose o =1 or k = 4.
Using equations (15), (18)-(20) and (27), we get

[ [ (jcb(s)@T(s)dB,-(s))zf (1) = ( J! w4x4(s>d8,-(s>jz? (1)

s @) s;P(7) s30(t) 5i40(t) uha(r)
5pp®(1) s @(r) s30(t) =5 @) | WL a(r)
Csa®()  ss®() L) 0 WL(t)
5:4®(1)  —s:4®(1) 0 S22 () | ()
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su®O) DT (1) +5,,P()DT (1) + 5,300 T ()3 + 54D DT (1)
si®(0) T (£ gy + 57 POV DT (1) +5;30() DT (1) 3 = 5;40(6) DT () pizg
53D () + 53D DT (1) + 1502 3 2 o) (13

T T +5; T
s @)D" ()1 — ;@)D () pyp + 112 200 ()4

Fl +le1“2 + sl3F3 +sl4F
Fl +Sl1F2 +sl3F -8 F

= +s ()
sl + 5305 + % i3

r r Sil — Si2
sialin = sialip + =T}y

Si1 82 i3 Si4 Iy
Si2 Sil Si3 —Si4 Ai2
= ) i1t 82 0 @(l‘)
Si3 Si3 2 i3
Si1 Si2 N
Si4  —Si4 0 : > : Fi4

= (8)4a T @(0) = (Er) 4, g @), i=1,2, .. m

In general, we have
t A
( j OCD(S)QT(s)dBi(s)jZI-T D) = (B @), i=12,.om (42)

where

(Ei )kxk = (Si )kxk(fi )kxl’

with

(§i)k><k = (43)
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where
(§i)1><1 = Sil»
B
(Az)(%jx(%) = diag[é)i%)x(gj : (Sils SiD5 wees Si’%)T ]T
and
(fi )k><1 = 12
L
Similarly,
[ 0607 (s |80 = Festo
where
Epxk = Pk it
with
_EHE) TS
Pixk = | ~ :
}{72 k Qi (k
(7)*(5} (Ej(i)
where
[N)lxl = P1»

FEp(E) ™ (4l Py Py
2 2 2 2 2 2

205

(44)

(45)
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Q(gjx(g) = diag[é)(é)x(ﬁj ‘(Pl, P25 s p%)T]T

2 2
and
B,
B =| 2
By

With substituting relations (42) and (44) in (41), we get
m ~
xTo() = FTo@t)+ XTED() + XT [Z E,-JCD(t).
i=1

Then
m ~
XT[I—E—ZE,}:FT. (46)
i=1

T
So, by setting N = [1 -FE - Zz’il E’j and replacing =~ by =, we will have

NX =F (47)

which is a linear system of equations that give the approximate RH functions

coefficient of the unknown stochastic processes X (z), so
X(0) = xTo().
5. Numerical Examples in the Population Growth

Consider the following simple population growth model:

dN(t) _
R a(t)N(t),

N(0) = Ny,

(48)
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where N(z) is the number of population individuals at time ¢ and
N(0) = Ny is the initial number at time ¢ = 0, and a(¢) is the growth rate at

time ¢.

Suppose that a(z) depends on several independent random environment

effects, 1.e.,

o) = at)+ 5 D 0F 0+ L BOC)

where W(t) = (Wi(¢t), Wy(¢), ..., W,,(¢)) is an m-dimensional white noise

dB;(t) .
dr

an m-dimensional Brownian motion and so B;(z) is a nonrandom function

with W;(¢) = 1, 2,..,m and B(t) = (B(¢), By(¢), ..., B,,(t)) is

that represented the infirmity and intensity of random environment impress

of source i on noise term at time ¢, and o) is nonrandom growth relative
rate at time ¢, and nonrandom functions o;(¢) represented the error of

estimation of growth rate affected by random environment source i at time ¢.

Then we can define generalized stochastic exponential model of

population growth as:

o - {“@ e DO I Bi(t)W,-(t)}N(t),

N(0) = Ny,

(49)

N(t)= Ng + J.(:[a(s) + %Zociz(s)JN(s)ds + ZI(;BI-(S)N(S)dBI-(S). (50)
i=l i=1

The exact solution of stochastic differential equation (49) or stochastic

integral equation (50) is given by:
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N = Noexp| [ | as)+ 5D @F)- 6D |ds+ Y. [ Bis)aBis) | (51)
i=1 i=1

Example 1. Consider the generalized stochastic exponential population
growth model (50) for:

6 1 1 2
NO =3x10 . (X(f) Z\/;, Otl(t) Zm, (12(1)25, oc3(l)=§,

Bule) = 1 Bal0) = 2 sy = 0.

By using (51), the exact population is

33
625 A 251 39 1If
N(t) = 3x10° exp 3 ~ %00 T 1380 " 12800sm(2t)+—10 OSdBl(S)

+ %J‘; sin(s)dB,(s) + %J-(: cos(s)dB3(s) |

The approximate population for & =8, 16 and exact population are

shown in Table 1.

Table 1. The approximate population for £ = §, 16 and exact population

t k=8 Exact population k=16 Exact population

0 3044364 3000000 2712845 3000000
0.1 3044364 3182066 2915067 3036580
0.2 3244082 3356961 3535026 2825879
0.3 3420381 3568060 3398110 3174003
0.4 3503931 3333178 3263357 3493842
0.5 4230020 3729508 4363434 4478632
0.6 4230020 5188192 5493520 5040425
0.7 4184674 4396767 4383276 5184639
0.8 4437845 4719844 6166777 5948840
0.9 6802696 6521209 6697355 6380061

1 6802696 6562872 9605935 8807838

Relative error 0.080275 0.100782
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Example 2. Consider the generalized stochastic exponential population
growth model (50) for:

_ 7 _ -1 _3 A
Ny =5x10", olt) = In(1 + ¢), oy () = 0 a,(t) = =0’ as(t) = 50

1 |
Bi(r) = exp(=5¢), o (t) = ma B3(t) = 155 sin()-

By using (51), the exact population is

exp(—10¢) . 1 . sin(2¢)
20 10(10 + t)5 180000

N(t) = 5x10’ exp[(l +1)In(1 + £) +

88939 1 -6 t
9000 " ~ 30 10 +Ioexp( 5s)dB(s)

t 1 1 (!
+ IomdBZ(S) + mJ‘O sin(s)dBs(s) |.

The approximate population for &k =8, 16 and exact population are

shown in Table 2.

Table 2. The approximate population for £ = §, 16 and exact population

t k=8 Exact population k=16 Exact population

0 51765796 50000000 38839020 50000000
0.1 51765796 44527970 48264041 38307964
0.2 51450931 52931623 48450386 53689898
0.3 43049507 41949173 57691495 49328192
0.4 42614948 41819435 54382754 54455818
0.5 63213233 52506494 48783808 48160566
0.6 63213233 66535138 52598742 51980972
0.7 66563238 57786764 51769125 48517420
0.8 69235074 59706259 57290571 46441019
0.9 76096164 68674659 61102214 69455533

1 76096164 66585983 62138305 67828762

Relative error 0.109092 0.128459
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6. Conclusion

Because it is almost impossible to find the exact solution of equation

(40), it would be convenient to determine its numerical solution based on

stochastic numerical analysis. Using rationalized Haar functions as basis

functions to solve the linear stochastic Ito6-Volterra integral equations with

several independent white noise sources is very simple and effective in

comparison with other methods. Its applicability and accuracy is checked on

some examples. Moreover, one could also apply the It6-Taylor expansion

described by Kloeden and Platen [3], or those from article [30], for example.

Certainly, it could be the topic of some future work.
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