Far East Journal of Mathematical Sciences (FJMS)
© 2016 Pushpa Publishing House, Allahabad, India
Published Online: September 2016
http://dx.doi.org/10.17654/MS100071017
Volume 100, Number 7, 2016, Pages 1017-1030

HAUSDORFF PROPERTY OF SOME DERIVED GRAPHS

V. Seena and Raji Pilakkat
Department of Mathematics
University of Calicut
Malappuram 673635
Kerala, India
e-mail: seenavclt@gmail.com
rajiunical@rediffmail.com

Abstract

A simple graph G is said to be Hausdorff if for any two distinct vertices u and v of G, one of the following conditions holds: (1) At least one of u and v is isolated. (2) There exist two nonadjacent edges e_{1} and e_{2} of G such that e_{1} is incident with u and e_{2} is incident with v.

In this paper, we discuss the Hausdorff property of some graphs which are derived from the given graph.

1. Introduction

All graphs considered here are finite and simple. In this paper, we denote the set of vertices of G by $V(G)$, the set of edges of G by $E(G)$ and the minimum degree of G by $\delta(G)$.

Received: January 27, 2016; Revised: May 19, 2016; Accepted: July 22, 2016
2010 Mathematics Subject Classification: 05C99.
Keywords and phrases: Hausdorff graph, empty graph, splitting graph, subdivision graph, shadow graph, total graph, quasi-total graph, 1-quasi-total graph, 2-quasi-total graph.

The degree [6] of a vertex v in a graph G, denoted by deg v, is the number of edges incident with v. A pendant vertex [7] in a graph G is a vertex of degree one. The unique edge incident with a pendant vertex is the pendant edge [7] and the vertex adjacent to the pendant vertex is the support vertex. A vertex v is isolated [6] if $\operatorname{deg} v=0$. By an empty graph [4], we mean a graph with no edges. A simple graph is said to be complete [1] if every pair of distinct vertices of G are adjacent in G. A complete graph on n vertices is denoted by K_{n}. The union [13] of two graphs G_{1} and G_{2} denoted by $G_{1} \cup G_{2}$ is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The total graph [12] $T(G)$ of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent whenever they are either adjacent or incident in G. For a graph G, the splitting graph [8] $S(G)$ is obtained by adding to each vertex v a new vertex v^{\prime} such that v^{\prime} is adjacent to every vertex that is adjacent to v in G. The subdivision graph [5] $S D(G)$ of the graph G is obtained from G by inserting a new vertex of degree 2 on each edge of G.

A graph G is said to be Hausdorff [11] if for any two distinct vertices u and v of G, one of the following conditions holds:
(1) At least one of u and v is isolated.
(2) There exist two nonadjacent edges e_{1} and e_{2} of G such that e_{1} is incident with u and e_{2} is incident with v.

From the definition of a Hausdorff graph, we have:
Remark 1. Let G_{1} and G_{2} be two isomorphic graphs, that is, $G_{1} \cong G_{2}$. If G_{1} is Hausdorff, then G_{2} is also Hausdorff.

Theorem 2 [11]. Let $G=(V(G) E(G))$ be a graph with $\delta(G) \geq 3$. Then G is Hausdorff.

Theorem 3 [11]. Line graph of a Hausdorff graph is Hausdorff.

2. Splitting Graph, Subdivision Graph and Shadow Graph

Splitting graph $S(G)$ of a graph G is one of the interesting graphs derived from the given graph G. The vertex set, $V(S(G))$, of $S(G)$ can be partitioned into $V(G) \cup H$, where H consists of all newly added vertices corresponding to each vertex of G. Hereafter, we denote the vertex of H corresponding to the vertex v of G by v^{\prime}.

C_{4}

$S\left(C_{4}\right)$

Figure 1. Cycle C_{4} and its splitting graph $S\left(C_{4}\right)$.

Theorem 4. Let G be a graph with no pendant vertices. Then the splitting graph, $S(G)$, of G is Hausdorff. In particular, splitting graph of a Hausdorff graph is Hausdorff.

Proof. Let u and v be two distinct vertices of $S(G)$.
Case 1. u and v are in $V(G)$.
If u and v are adjacent vertices of G, then $u v^{\prime}$ and $v u^{\prime}$ are two nonadjacent edges of $S(G)$. Suppose u is not adjacent to v. Since G contains no pendant vertices, both u and v are adjacent to at least two vertices of G. Let u_{1} be a vertex of G adjacent to u. Let v_{1} be a vertex of G distinct from u_{1} and is adjacent to v. Then $u u_{1}$ and $v v_{1}$ are two nonadjacent edges of $S(G)$.

Case 2. u and v are in H.
Let us suppose that u and v are the newly added vertices corresponding to the vertices x and y of G, respectively. That is, $u=x^{\prime}$ and $v=y^{\prime}$. If x and y are adjacent vertices of G, then $u y$ and $v x$ are two nonadjacent edges of $S(G)$. Suppose x is not adjacent to y. Then, as in the proof of Case 1, we get two nonadjacent edges of $S(G)$ incident with u and v, respectively.

Case 3. $u \in V(G)$ and $v \in H$.
Suppose $v=u^{\prime}$. Since G contains no pendant vertices, u is adjacent to at least two vertices, say u_{1} and u_{2} of G. Hence u^{\prime} is adjacent to both vertices u_{1} and u_{2} in G. Therefore, $u u_{1}$ and $v u_{2}$ are two nonadjacent edges of $S(G)$.

Now, suppose $v \neq u^{\prime}$. Let v be x^{\prime} for some $x \in V(G)$. If u and x are adjacent vertices of G, then choose a vertex w of G distinct from u and adjacent to x. Then $u x$ and $v w$ are two nonadjacent edges of $S(G)$. If u is not adjacent to x, then there exist two distinct vertices w_{1} and w_{2} of G such that u is adjacent to w_{1} and x is adjacent to w_{2}. Then $u w_{1}$ and $v w_{2}$ are two nonadjacent edges of $S(G)$ incident with u and v, respectively.

Hence the theorem.
Proposition 5. The splitting graph $S(G)$ of a graph G with at least one pendant vertex cannot be Hausdorff.

Proof. Let u be a pendant vertex of G and let v be its support vertex. Then $u^{\prime} v$ is a pendant edge of $S(G)$. Therefore, $S(G)$ is not Hausdorff.

Next, we consider the case of subdivision graphs. The vertex set $V(S D(G))$ of the subdivision graph $S D(G)$ is $V(G) \cup L$, where L consists of all newly added vertices on each edge of G. We denote the vertices of $\operatorname{SD}(G)$ corresponding to the edges e, f, \ldots of G by w_{e}, w_{f}, \ldots, respectively. Cycle C_{4} and its subdivision graph are shown in Figure 2:

C_{4}

$S D\left(C_{4}\right)$

Figure 2. Cycle C_{4} and its subdivision graph $S D\left(C_{4}\right)$.
Theorem 6. If G is a graph with no pendant vertices, then its subdivision graph $\operatorname{SD}(G)$ is Hausdorff.

Proof. Let u and v be two distinct vertices of $S D(G)$.
Case 1. u and v are vertices of G.
Since G is a graph with no pendant vertices, we can choose a vertex x of G distinct from v and adjacent to u. Similarly, choose a vertex y of G distinct from u and adjacent to v (x may be equal to y). Let w_{e} be the new vertex added on the edge $e=u x$ and w_{f} be the new vertex added on the edge $f=v y$. Then $u w_{e}$ and $v w_{f}$ are two nonadjacent edges of $S D(G)$.

Case 2. $u=w_{e}$ and $v=w_{f}$, for some edges e and f in G.
Since $u \neq v, e$ and f are distinct. Therefore, there exist two distinct vertices x and y such that e is incident with x and f is incident with y. Then $u x$ and $v y$ are two nonadjacent edges of $S D(G)$.

Case 3. $u \in V(G)$ and $v=w_{e}$, for some edge e of G.
Since G is a graph with no pendant vertices, there exists an edge f of G distinct from e such that f is incident with u in G. Let $f=u x$ and y be a vertex of G distinct from u and x such that the edge e is incident with y in G. Then $u w_{f}$ and $v y$ are two nonadjacent edges of $S D(G)$.

Thus, for any two distinct vertices u and v of $\operatorname{SD}(G)$ there exist two nonadjacent edges e_{1} and e_{2} of $\operatorname{SD}(G)$ such that e_{1} is incident with u and e_{2} is incident with v. Hence $\operatorname{SD}(G)$ is Hausdorff.

Note that, if $e=u v$ is a pendant edge of a graph G with u as its pendant vertex, then $u w_{e}$ is a pendant edge of its subdivision graph $\operatorname{SD}(G)$. Therefore, $S D(G)$ is not Hausdorff. So we have:

Proposition 7. If G is a graph with a pendant vertex, then its subdivision graph $S D(G)$ cannot be Hausdorff.

Definition 8. The shadow graph [2] $D_{2}(G)$ of a connected graph G is constructed as follows:

Take two copies G^{\prime} and $G^{\prime \prime}$ of G. Denote the vertices of G^{\prime} and $G^{\prime \prime}$ corresponding to the vertex v of G by v^{\prime} and $v^{\prime \prime}$, respectively. Then the shadow graph $D_{2}(G)$ of G is a graph whose vertex set is $V\left(G^{\prime}\right) \cup V\left(G^{\prime \prime}\right)$ and e is an edge of $D_{2}(G)$ if e is an edge of G^{\prime} or an edge of $G^{\prime \prime}$ or it is an edge with one end a vertex v^{\prime} of G^{\prime} and the other end a neighbour of the vertex $v^{\prime \prime}$ of $G^{\prime \prime}$.

Figure 3. Cycle C_{4} and its shadow graph $D_{2}\left(C_{4}\right)$.

Theorem 9. Let G be any graph with $\delta(G) \geq 1$. Then its shadow graph $D_{2}(G)$ is Hausdorff.

Proof. Let u and v be two distinct vertices of $D_{2}(G)$. Suppose u and v belong to the copy G^{\prime} of G. Then $u=x^{\prime}$ and $v=y^{\prime}$ for some vertices x and y of G. Suppose x^{\prime} and y^{\prime} are adjacent vertices of G^{\prime}. Then $x^{\prime} y^{\prime \prime}$ and $y^{\prime} x^{\prime \prime}$ are two nonadjacent edges of $D_{2}(G)$. Suppose x^{\prime} and y^{\prime} are two nonadjacent vertices of G^{\prime}. Since $\delta(G) \geq 1$, there exist vertices p and q of G adjacent to the vertices x and y, respectively. Then $x^{\prime} p^{\prime}$ and $y^{\prime} q^{\prime \prime}$ are two nonadjacent edges of $D_{2}(G)$. Suppose $u=x^{\prime}$ and $v=y^{\prime \prime}$ for some vertices x, y of G. Since $\delta(G) \geq 1$, there exist vertices p and q which are adjacent to the vertices x and y, respectively. Then $x^{\prime} p^{\prime}$ and $y^{\prime \prime} q^{\prime \prime}$ are two nonadjacent edges of $D_{2}(G)$. Hence the theorem.

3. Total Graph and Quasi-total Graph

Figure 4 shows that the total graph of a non-Hausdorff graph may be Hausdorff. Note that the graph P_{2} is free from isolated vertices and K_{2} is not a component of P_{2}. Theorem 10 shows that this result is true, in general. That is, if $\delta(G) \geq 1$ and K_{2} is not a component of G, then its total graph $T(G)$ is Hausdorff.

Figure 4. Path P_{2} and its total graph $T\left(P_{2}\right)$.

Theorem 10. Let G be a graph with no isolated vertices. If K_{2} is not a component of G, then its total graph $T(G)$ is Hausdorff.

Proof. Let u and v be two distinct vertices of $T(G)$.

Suppose $u, v \in V(G)$. Since K_{2} is not a component of G, there exists a vertex w of G such that w is adjacent to u or v or both. Without loss of generality, assume that u is adjacent to w. Suppose f is an edge incident with v. Then $u e$ and $v f$ are two nonadjacent edges of $T(G)$, where e is the edge $u w$.

Now suppose $u, v \in E(G)$. Then there exist two distinct vertices x and y such that u is incident with x and v is incident with y. Then $u x$ and $v y$ are two nonadjacent edges of $T(G)$.

Now suppose $u \in V(G)$ and $v \in E(G)$. Let w be a vertex of G adjacent to u in G. Since K_{2} is not a component of G, there exists an edge f of G incident with v in G. Then $u w$ and $v f$ are two nonadjacent edges of $T(G)$. Therefore, $T(G)$ is Hausdorff.

Example 11.

C_{4}

$T\left(C_{4}\right)$

Figure 5. Cycle C_{4} and its total graph $T\left(C_{4}\right)$.

Theorem 12. Let G be any graph. If K_{2} is not a component of G, then its total graph $T(G)$ is Hausdorff. In particular, total graph of a Hausdorff graph is Hausdorff.

Proof. We have $V(G)=H \bigcup K$, where H is the set all isolated vertices of G and K is the set all non-isolated vertices of G. So $T(G)=T(H) \cup T(K)$. By Theorem 10, $T(K)$ is Hausdorff. Since the total graph of an empty graph
is empty, $T(H)$ is also Hausdorff. Therefore, $T(G)$, being the union of Hausdorff graph is Hausdorff.

Another interesting graph that we can derive from the given graph is quasi-total graph.

Definition 13. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The quasi-total graph [9] $P(G)$ of G is a graph with vertex set $V(G) \cup E(G)$ and two vertices are adjacent if they correspond to two nonadjacent vertices of G or to two adjacent edges of G or to a vertex and an edge incident to it in G.

Figure 6. Cycle C_{4} and its quasi-total graph $P\left(C_{4}\right)$.
Theorem 14. Let G be a graph with $\delta(G) \geq 2$. Then its quasi-total graph $P(G)$ of G is Hausdorff.

Proof. Let u and v be two distinct vertices of $P(G)$.
First of all, suppose both u and v are vertices of G. Since $\delta(G) \geq 2$, there exists a vertex w of G distinct from v and adjacent to u in G. Similarly, there exists a vertex x of G distinct from u and adjacent to v in G. Let $e=u w$ and $f=v x$. Then $u e$ and $v f$ are two nonadjacent edges of $P(G)$.

Now, suppose both u and v are edges of G. Then there exist two distinct vertices x and y such that u is incident with x and v is incident with y. Then $u x$ and $v y$ are two nonadjacent edges of $P(G)$.

Finally, suppose u is a vertex of G and v is an edge of G. Let w be a vertex of G distinct from u such that the edge v is incident with w. Since $\delta(G) \geq 2$, there exists a vertex x distinct from w and adjacent to u. Let $e=$ $u x$. Then $u e$ and $v w$ are two nonadjacent edges of $P(G)$. Hence the theorem.

Corollary 15. If G is a Hausdorff graph with no isolated vertices, then its quasi-total graph $P(G)$ is Hausdorff.

The question then arises is that what happens to the quasi-total graph when we decrease the minimum degree of the graph G. Unfortunately, the result remains failed in certain cases. For example if $G \cong K_{2}$, then $P(G)$ $\cong P_{2}$, a path on two vertices which is not Hausdorff. Similarly, if G is an empty graph on two vertices, then $P(G) \cong K_{2}$, which is also non-Hausdorff. This shows that $P(G)$ need not be Hausdorff if G is a graph with $\delta(G)<2$.

But one can overcome this difficulty by giving some restrictions to the graph G.

Theorem 16. Let G be a graph with no isolated vertices and K_{2} is not a component of G. Then its quasi-total graph $P(G)$ is Hausdorff.

Proof. Let u and v be two distinct vertices of $P(G)$.
Suppose $u, v \in V(G)$. Since G contains no isolated vertices and K_{2} is not its component, there exist distinct edges e and f in G incident with u and v, respectively. Then $u e$ and $v f$ are two nonadjacent edges of $P(G)$.

Now suppose $u, v \in V(G)$. Then there exist two distinct vertices x and y such that u is incident with x and v is incident with y. Then $u x$ and $v y$ are two nonadjacent edges of $P(G)$.

Now suppose $u \in V(G)$ and $v \in E(G)$. Since K_{2} is not a component of G, there exists an edge f of G incident with v. Let x be the end point of f which is not incident with the edge v. If $e=u x$ is an edge of G, then $u e$ and
$v f$ are two nonadjacent edges of $P(G)$. Otherwise $u x$ and $v f$ are two nonadjacent edges of $P(G)$. Therefore, $P(G)$ is Hausdorff.

4. 1-quasi-total Graph and 2-quasi-total Graph

Definition 17. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The 1-quasi-total graph [10], $Q_{1}(G)$ of G is a graph with vertex set, $V\left(Q_{1}(G)\right)=V(G) \bigcup E(G)$ and two vertices x, y of $Q_{1}(G)$ are adjacent if they satisfy one of the following conditions:
(1) x, y are in $V(G)$ and $x y \in E(G)$.
(2) x, y are in $E(G)$ and x and y are incident in G.

G

$\mathrm{Q}_{1}(G)$

Figure 7. Cycle C_{4} and its 1-quasi-total graph $Q_{1}\left(C_{4}\right)$.

Remark 18. Since $Q_{1}(G)$ is the disjoint union of G and $L(G)$, if G is non-Hausdorff, then $Q_{1}(G)$ is non-Hausdorff.

Proposition 19. 1-quasi-total graph of a Hausdorff graph is Hausdorff.
Proof. Let G be a Hausdorff graph. Then, by Theorem 3, its line graph $L(G)$ is also Hausdorff. Therefore, the 1-quasi-total graph $Q_{1}(G)$, being the union of Hausdorff graphs, is Hausdorff.

Definition 20. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The 2-quasi-total graph [3], $Q_{2}(G)$ of G is a graph with vertex set,
$V\left(Q_{2}(G)\right)=V(G) \cup E(G)$ and two vertices x, y of $Q_{2}(G)$ are adjacent if they satisfy one of the following conditions:
(1) x, y are in $V(G)$ and $x y \in E(G)$.
(2) x is in $V(G), y$ is in $E(G)$ and x and y are incident in G.

G

$\mathrm{Q}_{2}(G)$

Figure 8. Cycle C_{4} and its 2-quasi-total graph $Q_{2}\left(C_{4}\right)$.

Theorem 21. Let G be a graph with $\delta(G) \geq 2$. Then 2-quasi-total graph, $Q_{2}(G)$, of G is Hausdorff.

Proof. Let u and v be two distinct vertices of $Q_{2}(G)$.
First of all, suppose u and v are vertices of G. Since $\delta(G) \geq 2$, there exists a vertex x distinct from v such that u is adjacent to x in G. Similarly, there exists a vertex y distinct from u such that v is adjacent to y in G. Then $u e$ and $v f$ are two nonadjacent edges of $Q_{2}(G)$, where $e=u x$ and $f=v y$ are edges of G.

Now suppose u and v are edges of G. Let x and y be two distinct vertices of G such that u is incident with x and v is incident with y in G . Therefore, $u x$ and $v y$ are two nonadjacent edges of $Q_{2}(G)$.

If u is a vertex of G and v is an edge of G, then there exists a vertex w of G distinct from u such that the edge v is incident with w in G. Since $\delta(G)$
≥ 2, there exists a vertex x distinct from w such that u is adjacent to x in G. Then $u x$ and $v w$ are two nonadjacent edges of $Q_{2}(G)$. Hence the theorem.

Let u be a pendant vertex of G with pendant edge $e=u v$. Then there does not exist nonadjacent edges e_{1} and e_{2} in $Q_{2}(G)$, incident with u and e, respectively. Therefore, $Q_{2}(G)$ cannot be Hausdorff. So we have:

Proposition 22. If G is a graph with at least one pendant vertex, then $Q_{2}(G)$ can never be Hausdorff. In particular, $Q_{2}\left(P_{n}\right)$ is non-Hausdorff for every n.

Theorem 23. The 2-quasi-total graph of a Hausdorff graph is Hausdorff.
Proof. We have $V(G)=H \bigcup K$, where H is the set of all isolated vertices of G and K is the set of all non-isolated vertices of G. So $Q_{2}(G)=Q_{2}(H)$ $\cup Q_{2}(K)$. Since 2-quasi-total graph of an empty graph is empty, $Q_{2}(H)$ is Hausdorff. By Theorem 21, $Q_{2}(H)$ is Hausdorff. Therefore, $Q_{2}(G)$ is the union of two Hausdorff graphs. Hence it is Hausdorff.

5. Conclusions

In this paper, we have discussed conditions for splitting graph, subdivision graph, shadow graph, total graph, quasi-total graph, 1-quasi-total graph and 2-quasi-total graph of a given graph to be Hausdorff. It is proved that the splitting graph, subdivision graph, total graph, 1-quasi-total graph and 2-quasi-total graph of a Hausdorff graph are Hausdorff. It is also proved that if G is a Hausdorff graph with no isolated vertices, then its quasi-total graph $P(G)$ is Hausdorff.

Acknowledgments

The first author acknowledges the financial support by University Grants Commission of India, under Faculty Development Programme.

The authors thank the anonymous referees for their valuable suggestions which led to the improvement of the manuscript.

References

[1] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Springer Science and Business Media, 2012.
[2] P. G. Bhat and D. C. Nayak, On balance index set of double graphs and derived graphs, Int. J. Math. Soft. Comput. 4(2) (2014), 81-93.
[3] S. Bhavanari, D. Srinivasulu and S. P. Kuncham, Line graphs and quasi-total graphs, Int. J. Comput. Appl. 105(3) (2014), 12-16.
[4] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Vol. 290, Macmillan, London, 1976.
[5] S. P. Hande, S. R. Jog, H. Ramane, P. Hampiholi, I. Gutman and B. Durgi, Derived graphs of subdivision graphs, Kragujevac J. Math. 37(2) (2013), 319-323.
[6] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[7] K. Parthasarathy, Basic Graph Theory, Tata McGraw-Hill, 1994.
[8] P. L. R. Raj and S. Koilraj, Cordial labeling for the splitting graph of some standard graphs, Int. J. Math. Soft. Comput. 1(1) (2011), 105-114.
[9] D. Sastry and B. S. P. Raju, Graph equations for line graphs, total graphs, middle graphs and quasi-total graphs, Discrete Math. 48(1) (1984), 113-119.
[10] R. Srinivasa Rao, J. Venkateswara Rao and D. Srinivasulu, A discussion on bounds for 1-quasi total colourings, Int. J. Math. Arch. (IJMA) 3(6) (2012), 2314-2320.
[11] V. Seena and R. Pilakkat, Hausdorff graphs, British J. Math. Comput. Sci. 12(1) (2016), 1-12.
[12] S. Vaidya and D. Bantva, Distance two labeling of some total graphs, General Math. Notes 3(1) (2011), 100-107.
[13] D. B. West et al., Introduction to Graph Theory, Volume 2, Prentice Hall, Upper Saddle River, 2001.

