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Abstract 

A simple graph G is said to be Hausdorff if for any two distinct 
vertices u and v of G, one of the following conditions holds: 

(1) At least one of u and v is isolated. 

(2) There exist two nonadjacent edges 1e  and 2e  of G such that 1e  is 

incident with u and 2e  is incident with v. 

In this paper, we discuss the Hausdorff property of some graphs which 
are derived from the given graph. 

1. Introduction 

All graphs considered here are finite and simple. In this paper, we denote 
the set of vertices of G by ( ),GV  the set of edges of G by ( )GE  and the 

minimum degree of G by ( ).Gδ  
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The degree [6] of a vertex v in a graph G, denoted by deg v, is the 
number of edges incident with v. A pendant vertex [7] in a graph G is a 
vertex of degree one. The unique edge incident with a pendant vertex is the 
pendant edge [7] and the vertex adjacent to the pendant vertex is the support 
vertex. A vertex v is isolated [6] if .0deg =v  By an empty graph [4], we 

mean a graph with no edges. A simple graph is said to be complete [1] if 
every pair of distinct vertices of G are adjacent in G. A complete graph on n 
vertices is denoted by .nK  The union [13] of two graphs 1G  and 2G  

denoted by 21 GG ∪  is the graph with vertex set ( ) ( )21 GVGV ∪  and edge 

set ( ) ( ).21 GEGE ∪  The total graph [12] ( )GT  of a graph G is the graph 

whose vertex set is ( ) ( )GEGV ∪  and two vertices are adjacent whenever 

they are either adjacent or incident in G. For a graph G, the splitting graph 
[8] ( )GS  is obtained by adding to each vertex v a new vertex v′  such that v′  

is adjacent to every vertex that is adjacent to v in G. The subdivision graph 
[5] ( )GSD  of the graph G is obtained from G by inserting a new vertex of 

degree 2 on each edge of G. 

A graph G is said to be Hausdorff [11] if for any two distinct vertices u 
and v of G, one of the following conditions holds: 

(1) At least one of u and v is isolated. 

(2) There exist two nonadjacent edges 1e  and 2e  of G such that 1e  is 

incident with u and 2e  is incident with v. 

From the definition of a Hausdorff graph, we have: 

Remark 1. Let 1G  and 2G  be two isomorphic graphs, that is, .~
21 GG =  

If 1G  is Hausdorff, then 2G  is also Hausdorff. 

Theorem 2 [11]. Let ( ) ( )( )GEGVG =  be a graph with ( ) .3≥δ G  Then 

G is Hausdorff. 

Theorem 3 [11]. Line graph of a Hausdorff graph is Hausdorff. 
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2. Splitting Graph, Subdivision Graph and Shadow Graph 

Splitting graph ( )GS  of a graph G is one of the interesting graphs derived 

from the given graph G. The vertex set, ( )( ),GSV  of ( )GS  can be partitioned 

into ( ) ,HGV ∪  where H consists of all newly added vertices corresponding 

to each vertex of G. Hereafter, we denote the vertex of H corresponding to 
the vertex v of G by .v′  

 
Figure 1. Cycle 4C  and its splitting graph ( ).4CS  

Theorem 4. Let G be a graph with no pendant vertices. Then the 
splitting graph, ( ),GS  of G is Hausdorff. In particular, splitting graph of a 

Hausdorff graph is Hausdorff. 

Proof. Let u and v be two distinct vertices of ( ).GS  

Case 1. u and v are in ( ).GV  

If u and v are adjacent vertices of G, then vu ′  and uv ′  are two 
nonadjacent edges of ( ).GS  Suppose u is not adjacent to v. Since G contains 

no pendant vertices, both u and v are adjacent to at least two vertices of G. 
Let 1u  be a vertex of G adjacent to u. Let 1v  be a vertex of G distinct from 

1u  and is adjacent to v. Then 1uu  and 1vv  are two nonadjacent edges of 

( ).GS  
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Case 2. u and v are in H. 

Let us suppose that u and v are the newly added vertices corresponding 
to the vertices x and y of G, respectively. That is, xu ′=  and .yv ′=  If x and 

y are adjacent vertices of G, then uy and vx are two nonadjacent edges of 
( ).GS  Suppose x is not adjacent to y. Then, as in the proof of Case 1, we get 

two nonadjacent edges of ( )GS  incident with u and v, respectively. 

Case 3. ( )GVu ∈  and .Hv ∈  

Suppose .uv ′=  Since G contains no pendant vertices, u is adjacent to at 
least two vertices, say 1u  and 2u  of G. Hence u′  is adjacent to both vertices 

1u  and 2u  in G. Therefore, 1uu  and 2vu  are two nonadjacent edges of ( ).GS  

Now, suppose .uv ′≠  Let v be x′  for some ( ).GVx ∈  If u and x are 

adjacent vertices of G, then choose a vertex w of G distinct from u and 
adjacent to x. Then ux and vw are two nonadjacent edges of ( ).GS  If u is not 

adjacent to x, then there exist two distinct vertices 1w  and 2w  of G such that 

u is adjacent to 1w  and x is adjacent to .2w  Then 1uw  and 2vw  are two 

nonadjacent edges of ( )GS  incident with u and v, respectively. 

Hence the theorem. ~ 

Proposition 5. The splitting graph ( )GS  of a graph G with at least one 

pendant vertex cannot be Hausdorff. 

Proof. Let u be a pendant vertex of G and let v be its support vertex. 
Then vu′  is a pendant edge of ( ).GS  Therefore, ( )GS  is not Hausdorff. ~ 

Next, we consider the case of subdivision graphs. The vertex set 
( )( )GSDV  of the subdivision graph ( )GSD  is ( ) ,LGV ∪  where L consists of 

all newly added vertices on each edge of G. We denote the vertices of ( )GSD  

corresponding to the edges ...,, fe  of G by ...,,, fe ww  respectively. Cycle 

4C  and its subdivision graph are shown in Figure 2: 
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Figure 2. Cycle 4C  and its subdivision graph ( ).4CSD  

Theorem 6. If G is a graph with no pendant vertices, then its subdivision 
graph ( )GSD  is Hausdorff. 

Proof. Let u and v be two distinct vertices of ( ).GSD  

Case 1. u and v are vertices of G. 

Since G is a graph with no pendant vertices, we can choose a vertex x of 
G distinct from v and adjacent to u. Similarly, choose a vertex y of G distinct 
from u and adjacent to v (x may be equal to y). Let ew  be the new vertex 

added on the edge uxe =  and fw  be the new vertex added on the edge 

.vyf =  Then euw  and fvw  are two nonadjacent edges of ( ).GSD  

Case 2. ewu =  and ,fwv =  for some edges e and f in G. 

Since ,vu ≠  e and f are distinct. Therefore, there exist two distinct 
vertices x and y such that e is incident with x and f is incident with y. Then ux 
and vy are two nonadjacent edges of ( ).GSD  

Case 3. ( )GVu ∈  and ,ewv =  for some edge e of G. 

Since G is a graph with no pendant vertices, there exists an edge f of G 
distinct from e such that f is incident with u in G. Let uxf =  and y be a 

vertex of G distinct from u and x such that the edge e is incident with y in G. 
Then fuw  and vy are two nonadjacent edges of ( ).GSD  
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Thus, for any two distinct vertices u and v of ( )GSD  there exist two 

nonadjacent edges 1e  and 2e  of ( )GSD  such that 1e  is incident with u and 

2e  is incident with v. Hence ( )GSD  is Hausdorff. ~ 

Note that, if uve =  is a pendant edge of a graph G with u as its pendant 
vertex, then euw  is a pendant edge of its subdivision graph ( ).GSD  

Therefore, ( )GSD  is not Hausdorff. So we have: 

Proposition 7. If G is a graph with a pendant vertex, then its subdivision 
graph ( )GSD  cannot be Hausdorff. 

Definition 8. The shadow graph [2] ( )GD2  of a connected graph G is 

constructed as follows: 

Take two copies G′  and G ′′  of G. Denote the vertices of G′  and G ′′  
corresponding to the vertex v of G by v′  and ,v ′′  respectively. Then the 

shadow graph ( )GD2  of G is a graph whose vertex set is ( ) ( )GVGV ′′′ ∪  and 

e is an edge of ( )GD2  if e is an edge of G′  or an edge of G ′′  or it is an edge 

with one end a vertex v′  of G′  and the other end a neighbour of the vertex 
v ′′  of .G ′′  

 
Figure 3. Cycle 4C  and its shadow graph ( ).42 CD  

Theorem 9. Let G be any graph with ( ) .1≥δ G  Then its shadow graph 

( )GD2  is Hausdorff. 
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Proof. Let u and v be two distinct vertices of ( ).2 GD  Suppose u and v 

belong to the copy G′  of G. Then xu ′=  and yv ′=  for some vertices x and 

y of G. Suppose x′  and y′  are adjacent vertices of .G′  Then yx ′′′  and xy ′′′  are 

two nonadjacent edges of ( ).2 GD  Suppose x′  and y′  are two nonadjacent 

vertices of .G′  Since ( ) ,1≥δ G  there exist vertices p and q of G adjacent to 

the vertices x and y, respectively. Then px ′′  and qy ′′′  are two nonadjacent 

edges of ( ).2 GD  Suppose xu ′=  and yv ′′=  for some vertices x, y of G. 

Since ( ) ,1≥δ G  there exist vertices p and q which are adjacent to the vertices 

x and y, respectively. Then px ′′  and qy ′′′′  are two nonadjacent edges of 

( ).2 GD  Hence the theorem. ~ 

3. Total Graph and Quasi-total Graph 

Figure 4 shows that the total graph of a non-Hausdorff graph may be 
Hausdorff. Note that the graph 2P  is free from isolated vertices and 2K  is 

not a component of .2P  Theorem 10 shows that this result is true, in general. 

That is, if ( ) 1≥δ G  and 2K  is not a component of G, then its total graph 

( )GT  is Hausdorff. 

 
Figure 4. Path 2P  and its total graph ( ).2PT  

Theorem 10. Let G be a graph with no isolated vertices. If 2K  is not a 

component of G, then its total graph ( )GT  is Hausdorff. 

Proof. Let u and v be two distinct vertices of ( ).GT  
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Suppose ( )., GVvu ∈  Since 2K  is not a component of G, there exists a 

vertex w of G such that w is adjacent to u or v or both. Without loss of 
generality, assume that u is adjacent to w. Suppose f is an edge incident with 
v. Then ue and vf are two nonadjacent edges of ( ),GT  where e is the edge uw. 

Now suppose ( )., GEvu ∈  Then there exist two distinct vertices x and y 

such that u is incident with x and v is incident with y. Then ux and vy are two 
nonadjacent edges of ( ).GT  

Now suppose ( )GVu ∈  and ( ).GEv ∈  Let w be a vertex of G adjacent 

to u in G. Since 2K  is not a component of G, there exists an edge f of G 

incident with v in G. Then uw and vf are two nonadjacent edges of ( ).GT  

Therefore, ( )GT  is Hausdorff. ~ 

Example 11. 

 
Figure 5. Cycle 4C  and its total graph ( ).4CT  

Theorem 12. Let G be any graph. If 2K  is not a component of G, then 

its total graph ( )GT  is Hausdorff. In particular, total graph of a Hausdorff 

graph is Hausdorff. 

Proof. We have ( ) ,KHGV ∪=  where H is the set all isolated vertices 

of G and K is the set all non-isolated vertices of G. So ( ) ( ) ( ).KTHTGT ∪=  

By Theorem 10, ( )KT  is Hausdorff. Since the total graph of an empty graph 
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is empty, ( )HT  is also Hausdorff. Therefore, ( ),GT  being the union of 

Hausdorff graph is Hausdorff. ~ 

Another interesting graph that we can derive from the given graph is 
quasi-total graph. 

Definition 13. Let G be a graph with vertex set ( )GV  and edge set ( ).GE  

The quasi-total graph [9] ( )GP  of G is a graph with vertex set ( ) ( )GEGV ∪  

and two vertices are adjacent if they correspond to two nonadjacent vertices 
of G or to two adjacent edges of G or to a vertex and an edge incident to it in 
G. 

 
Figure 6. Cycle 4C  and its quasi-total graph ( ).4CP  

Theorem 14. Let G be a graph with ( ) .2≥δ G  Then its quasi-total graph 

( )GP  of G is Hausdorff. 

Proof. Let u and v be two distinct vertices of ( ).GP  

First of all, suppose both u and v are vertices of G. Since ( ) ,2≥δ G  there 

exists a vertex w of G distinct from v and adjacent to u in G. Similarly, there 
exists a vertex x of G distinct from u and adjacent to v in G. Let uwe =  and 

.vxf =  Then ue and vf are two nonadjacent edges of ( ).GP  

Now, suppose both u and v are edges of G. Then there exist two distinct 
vertices x and y such that u is incident with x and v is incident with y. Then 
ux and vy are two nonadjacent edges of ( ).GP  
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Finally, suppose u is a vertex of G and v is an edge of G. Let w be a 
vertex of G distinct from u such that the edge v is incident with w. Since 
( ) ,2≥δ G  there exists a vertex x distinct from w and adjacent to u. Let =e  

.ux  Then ue and vw are two nonadjacent edges of ( ).GP  Hence the theorem. 

 ~ 

Corollary 15. If G is a Hausdorff graph with no isolated vertices, then 
its quasi-total graph ( )GP  is Hausdorff. 

The question then arises is that what happens to the quasi-total graph 
when we decrease the minimum degree of the graph G. Unfortunately, the 
result remains failed in certain cases. For example if ,2KG ≅  then ( )GP  

,2P≅  a path on two vertices which is not Hausdorff. Similarly, if G is an 

empty graph on two vertices, then ( ) ,2KGP ≅  which is also non-Hausdorff. 

This shows that ( )GP  need not be Hausdorff if G is a graph with ( ) .2<δ G  

But one can overcome this difficulty by giving some restrictions to the 
graph G. 

Theorem 16. Let G be a graph with no isolated vertices and 2K  is not a 

component of G. Then its quasi-total graph ( )GP  is Hausdorff. 

Proof. Let u and v be two distinct vertices of ( ).GP  

Suppose ( )., GVvu ∈  Since G contains no isolated vertices and 2K  is 

not its component, there exist distinct edges e and f in G incident with u and 
v, respectively. Then ue and vf are two nonadjacent edges of ( ).GP  

Now suppose ( )., GVvu ∈  Then there exist two distinct vertices x and y 

such that u is incident with x and v is incident with y. Then ux and vy are two 
nonadjacent edges of ( ).GP  

Now suppose ( )GVu ∈  and ( ).GEv ∈  Since 2K  is not a component of 

G, there exists an edge f of G incident with v. Let x be the end point of f 
which is not incident with the edge v. If uxe =  is an edge of G, then ue and 
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vf are two nonadjacent edges of ( ).GP  Otherwise ux and vf are two 

nonadjacent edges of ( ).GP  Therefore, ( )GP  is Hausdorff. ~ 

4. 1-quasi-total Graph and 2-quasi-total Graph 

Definition 17. Let G be a graph with vertex set ( )GV  and edge set 

( ).GE  The 1-quasi-total graph [10], ( )GQ1  of G is a graph with vertex set, 

( )( ) ( ) ( )GEGVGQV ∪=1  and two vertices x, y of ( )GQ1  are adjacent if 

they satisfy one of the following conditions: 

(1) x, y are in ( )GV  and ( ).GExy ∈  

(2) x, y are in ( )GE  and x and y are incident in G. 

 
Figure 7. Cycle 4C  and its 1-quasi-total graph ( ).41 CQ  

Remark 18. Since ( )GQ1  is the disjoint union of G and ( ),GL  if G is 

non-Hausdorff, then ( )GQ1  is non-Hausdorff. 

Proposition 19. 1-quasi-total graph of a Hausdorff graph is Hausdorff. 

Proof. Let G be a Hausdorff graph. Then, by Theorem 3, its line graph 
( )GL  is also Hausdorff. Therefore, the 1-quasi-total graph ( ),1 GQ  being the 

union of Hausdorff graphs, is Hausdorff. ~ 

Definition 20. Let G be a graph with vertex set ( )GV  and edge set 

( ).GE  The 2-quasi-total graph [3], ( )GQ2  of G is a graph with vertex set, 
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( )( ) ( ) ( )GEGVGQV ∪=2  and two vertices x, y of ( )GQ2  are adjacent if 

they satisfy one of the following conditions: 

(1) x, y are in ( )GV  and ( ).GExy ∈  

(2) x is in ( ) yGV ,  is in ( )GE  and x and y are incident in G. 

 

Figure 8. Cycle 4C  and its 2-quasi-total graph ( ).42 CQ  

Theorem 21. Let G be a graph with ( ) .2≥δ G  Then 2-quasi-total graph, 

( ),2 GQ  of G is Hausdorff. 

Proof. Let u and v be two distinct vertices of ( ).2 GQ  

First of all, suppose u and v are vertices of G. Since ( ) ,2≥δ G  there 

exists a vertex x distinct from v such that u is adjacent to x in G. Similarly, 
there exists a vertex y distinct from u such that v is adjacent to y in G. Then 
ue and vf are two nonadjacent edges of ( ),2 GQ  where uxe =  and vyf =  

are edges of G. 

Now suppose u and v are edges of G. Let x and y be two distinct vertices 
of G such that u is incident with x and v is incident with y in G. Therefore, ux 
and vy are two nonadjacent edges of ( ).2 GQ  

If u is a vertex of G and v is an edge of G, then there exists a vertex w of 
G distinct from u such that the edge v is incident with w in G. Since ( )Gδ  
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,2≥  there exists a vertex x distinct from w such that u is adjacent to x in G. 

Then ux and vw are two nonadjacent edges of ( ).2 GQ  Hence the theorem. ~ 

Let u be a pendant vertex of G with pendant edge .uve =  Then there 
does not exist nonadjacent edges 1e  and 2e  in ( ),2 GQ  incident with u and e, 

respectively. Therefore, ( )GQ2  cannot be Hausdorff. So we have: 

Proposition 22. If G is a graph with at least one pendant vertex, then 
( )GQ2  can never be Hausdorff. In particular, ( )nPQ2  is non-Hausdorff for 

every n. 

Theorem 23. The 2-quasi-total graph of a Hausdorff graph is Hausdorff. 

Proof. We have ( ) ,KHGV ∪=  where H is the set of all isolated vertices 

of G and K is the set of all non-isolated vertices of G. So ( ) ( )HQGQ 22 =  

( ).2 KQ∪  Since 2-quasi-total graph of an empty graph is empty, ( )HQ2  is 

Hausdorff. By Theorem 21, ( )HQ2  is Hausdorff. Therefore, ( )GQ2  is the 

union of two Hausdorff graphs. Hence it is Hausdorff. ~ 

5. Conclusions 

In this paper, we have discussed conditions for splitting graph, 
subdivision graph, shadow graph, total graph, quasi-total graph, 1-quasi-total 
graph and 2-quasi-total graph of a given graph to be Hausdorff. It is proved 
that the splitting graph, subdivision graph, total graph, 1-quasi-total graph 
and 2-quasi-total graph of a Hausdorff graph are Hausdorff. It is also proved 
that if G is a Hausdorff graph with no isolated vertices, then its quasi-total 
graph ( )GP  is Hausdorff. 
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