Published Online: September 2016 http://dx.doi.org/10.17654/MS100060953

Volume 100, Number 6, 2016, Pages 953-963

SOME HADAMARD-TYPE INEQUALITIES ON FRACTIONAL INTEGRAL AND APPLICATIONS

ISSN: 0972-0871

Booppa Kraisai and Sirichan Vesarachasart

Department of Mathematics and Statistics Faculty of Science and Technology Thammasat University Pathumthani 12120, Thailand

Abstract

In this paper, we present some new integral inequalities via Hadamard integral and apply these inequalities to construct special inequalities.

1. Introduction

In recent years, inequalities are playing a very significant role in all fields of mathematics, and have applications in many fields. Consider the functional

$$T(f,g) := \frac{1}{b-a} \int_{a}^{b} f(x)g(x)dx - \left(\frac{1}{b-a} \int_{a}^{b} f(x)dx\right) \left(\frac{1}{b-a} \int_{a}^{b} g(x)dx\right), (1.1)$$

where f and g are two integrable functions which are synchronous on [a, b], (i.e., $((f(x) - f(y))(g(x) - g(y)) \ge 0$ for any $x, y \in [a, b]$), given in [1]. Many researchers have given considerable attention to (1.1) and number of inequalities appeared in literature see [2, 7, 8].

Received: April 7, 2016; Accepted: June 13, 2016

2010 Mathematics Subject Classification: 26D15, 26A33.

Keywords and phrases: Hadamard fractional integral, fractional integral inequality.

Communicated by K. K. Azad

Recently many authors have studied integral inequalities on fractional calculus using Riemann-Liouville, Caputo derivative, see [2-5] and the references therein.

Another kind of fractional derivative is the fractional derivative due to Hadamard [6]. Recently in the literature, there appeared some results on fractional integral inequalities using Hadamard fractional integral; see [7-10].

The aim of this paper is to establish two integral inequalities using Hadamard fractional integral.

2. Preliminaries

In this section, we give some preliminaries and basic proposition used in this paper. We give some definitions of Hadamard fractional integral as in [11, p. 159-171]. The necessary background details are given in the book by Kilbas et al. [12].

Definition 1. The *Hadamard fractional integral* of order $\alpha \in \mathbb{R}^+$ of a function f(t), for all t > 1 is defined as

$${}_{H}D_{1,t}^{-\alpha}f(t) = \frac{1}{\Gamma(\alpha)} \int_{1}^{t} \left(\ln \frac{t}{x} \right)^{\alpha - 1} f(x) \frac{dx}{x}, \tag{2.1}$$

where Γ is the gamma function defined by

$$\Gamma(\alpha) = \int_0^\infty e^{-x} x^{\alpha - 1} dx,$$

where $\alpha > 0$. Note that $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$.

From the above definitions, we can see the difference between Hadamard fractional and Riemann-Liouville fractional integrals. The kernel in the Hadamard integral has the form of $\ln\left(\frac{t}{x}\right)$ instead of the form of (x-t).

In [8], Chinchane and Pachpatte presented a fractional integral inequality via Hadamard integral as follows.

Theorem 2 [8]. Let f and g be two functions on $[0, \infty)$ such that

$$(f(x) - f(y))(g(x) - g(y)) \ge 0$$

for all x, y. Then

$$_{H}D_{l,t}^{-\alpha}(fg)(t) \ge \frac{\Gamma(\alpha+1)}{(\ln t)^{\alpha}} (_{H}D_{l,t}^{-\alpha}f(t)) (_{H}D_{l,t}^{-\alpha}g(t))$$

for all $\alpha > 0$, t > 1.

In [9], Sroysang presented new inequalities on Hadamard fractional integral as follows.

Theorem 3 [9]. Let f, g and h be functions on $[0, \infty)$ such that

$$(f(x) - f(y))(g(x) - g(y))(h(x) + h(y)) \ge 0$$

for all x, y. Then

$$_{H}D_{1,\,t}^{-\alpha}(fgh)(t)_{H}D_{1,\,t}^{-\alpha}(t) + _{H}D_{1,\,t}^{-\alpha}(fg)(t)_{H}D_{1,\,t}^{-\alpha}h(t)$$

$$\geq {}_{H}D_{\mathbf{l},\,t}^{-\alpha}g(t)_{H}D_{\mathbf{l},\,t}^{-\alpha}(fh)(t) + {}_{H}D_{\mathbf{l},\,t}^{-\alpha}f(t)_{H}D_{\mathbf{l},\,t}^{-\alpha}(gh)(t)$$

for all $\alpha > 0$, t > 1.

3. Results

Theorem 4. Let f, g, h and k be functions on $[0, \infty)$ such that

$$(f(x) - f(y))(g(x) - g(y))(h(x) + h(y))(k(x) + k(y)) \ge 0$$

for all x, y. Then

$$\begin{split} &_{H}D_{l,\,t}^{-\alpha}(fghk)(t)_{H}D_{l,\,t}^{-\alpha}(1) + _{H}D_{l,\,t}^{-\alpha}(fgh)(t)_{H}D_{l,\,t}^{-\alpha}k(t) \\ &+ _{H}D_{l,\,t}^{-\alpha}(fgk)(t)_{H}D_{l,\,t}^{-\alpha}h(t) + _{H}D_{l,\,t}^{-\alpha}(fg)(t)_{H}D_{l,\,t}^{-\alpha}(hk)(t) \\ &\geq _{H}D_{l,\,t}^{-\alpha}f(t)_{H}D_{l,\,t}^{-\alpha}(ghk)(t) + _{H}D_{l,\,t}^{-\alpha}g(t)_{H}D_{l,\,t}^{-\alpha}(fhk)(t) \\ &+ _{H}D_{l,\,t}^{-\alpha}(fh)(t)_{H}D_{l,\,t}^{-\alpha}(gk)(t) + _{H}D_{l,\,t}^{-\alpha}(fk)(t)_{H}D_{l,\,t}^{-\alpha}(gh)(t) \end{split}$$
 for all $\alpha > 0, t > 1$.

Proof. By the assumption, for any x, y, we have

$$(fghk)(x) + (fghk)(y) + (fgh)(x)k(y) + k(x)(fgh)(y)$$

$$+ (fgk)(x)h(y) + h(x)(fgk)(y) + (fg)(x)(hk)(y) + (hk)(x)(fg)(y)$$

$$\geq f(x)(ghk)(y) + (ghk)(x)f(y) + g(x)(fhk)(y) + (fhk)(x)g(y)$$

$$+ (fh)(x)(gk)(y) + (gk)(x)(fh)(y) + (fk)(x)(gh)(y)$$

$$+ (gh)(x)(fk)(y).$$

$$\int_{1}^{t} \left(\ln \frac{t}{x} \right)^{\alpha - 1} (fghk)(x) \frac{dx}{x} + \int_{1}^{t} \left(\ln \frac{t}{x} \right)^{\alpha - 1} (fghk)(y) \frac{dx}{x} \\
+ \int_{1}^{t} \left(\ln \frac{t}{x} \right)^{\alpha - 1} (fgh)(x)k(y) \frac{dx}{x} \\
+ \int_{1}^{t} \left(\ln \frac{t}{x} \right)^{\alpha - 1} k(x)(fgh)(y) \frac{dx}{x} + \int_{1}^{t} \left(\ln \frac{t}{x} \right)^{\alpha - 1} (fgk)(x)h(y) \frac{dx}{x} \\
+ \int_{1}^{t} \left(\ln \frac{t}{x} \right)^{\alpha - 1} h(x)(fgk)(y) \frac{dx}{x} \\
+ \int_{1}^{t} \left(\ln \frac{t}{x} \right)^{\alpha - 1} (fg)(x)(hk)(y) \frac{dx}{x} + \int_{1}^{t} \left(\ln \frac{t}{x} \right)^{\alpha - 1} (hk)(x)(fg)(y) \frac{dx}{x} \\
\geq \int_{1}^{t} \left(\ln \frac{t}{x} \right)^{\alpha - 1} f(x)(ghk)(y) \frac{dx}{x} + \int_{1}^{t} \left(\ln \frac{t}{x} \right)^{\alpha - 1} (ghk)(x)f(y) \frac{dx}{x} \\
+ \int_{1}^{t} \left(\ln \frac{t}{x} \right)^{\alpha - 1} g(x)(fhk)(y) \frac{dx}{x} + \int_{1}^{t} \left(\ln \frac{t}{x} \right)^{\alpha - 1} (fh)(x)(gk)(y) \frac{dx}{x}$$

$$+ \int_{1}^{t} \left(\ln \frac{t}{x} \right)^{\alpha - 1} (gk)(x) (fh)(y) \frac{dx}{x}$$

$$+ \int_{1}^{t} \left(\ln \frac{t}{x} \right)^{\alpha - 1} (fk)(x) (gh)(y) \frac{dx}{x} + \int_{1}^{t} \left(\ln \frac{t}{x} \right)^{\alpha - 1} (gh)(x) (fk)(y) \frac{dx}{x}.$$

Consequently,

$$\begin{split} &_{H}D_{1,t}^{-\alpha}(fghk)(t) + (fghk)(y)_{H}D_{1,t}^{-\alpha}(1) + k(y)_{H}D_{1,t}^{-\alpha}(fgh)(t) \\ &_{H}(fgh)(y)_{H}D_{1,t}^{-\alpha}(k)(t) + (h)(y)_{H}D_{1,t}^{-\alpha}(fgk)(t) \\ &_{H}(fgk)(y)_{H}D_{1,t}^{-\alpha}(h)(t) + (hk)(y)_{H}D_{1,t}^{-\alpha}(fg)(t) \\ &_{H}(fg)(y)_{H}D_{1,t}^{-\alpha}(hk)(t) \\ &_{H}(fg)(y)_{H}D_{1,t}^{-\alpha}(hk)(t) \\ &_{H}(fgh)(y)_{H}D_{1,t}^{-\alpha}(f)(t) + f(y)_{H}D_{1,t}^{-\alpha}(ghk)(t) \\ &_{H}(fhk)(y)_{H}D_{1,t}^{-\alpha}g(t) + g(y)_{H}D_{1,t}^{-\alpha}(fhk)(t) \\ &_{H}(gk)(y)_{H}D_{1,t}^{-\alpha}(fh)(t) + (fh)(y)_{H}D_{1,t}^{-\alpha}(gk)(t) \\ &_{H}(gh)(y)_{H}D_{1,t}^{-\alpha}(fk)(t) + (fk)(y)_{H}D_{1,t}^{-\alpha}(gh)(t), \end{split}$$

where $\alpha > 0$, t > 1 and $y \in (1, t)$.

Similarly, we can write

$$\begin{split} &_{H}D_{1,\,t}^{-\alpha}(fghk)(t)_{H}D_{1,\,t}^{-\alpha}(1) + _{H}D_{1,\,t}^{-\alpha}(fgh)(t)_{H}D_{1,\,t}^{-\alpha}k(t) \\ &+ _{H}D_{1,\,t}^{-\alpha}(fgk)(t)_{H}D_{1,\,t}^{-\alpha}h(t) + _{H}D_{1,\,t}^{-\alpha}(fg)(t)_{H}D_{1,\,t}^{-\alpha}(hk)(t) \\ &\geq _{H}D_{1,\,t}^{-\alpha}f(t)_{H}D_{1,\,t}^{-\alpha}(ghk)(t) + _{H}D_{1,\,t}^{-\alpha}g(t)_{H}D_{1,\,t}^{-\alpha}(fhk)(t) \\ &+ _{H}D_{1,\,t}^{-\alpha}(fh)(t)_{H}D_{1,\,t}^{-\alpha}(gk)(t) + _{H}D_{1,\,t}^{-\alpha}(fk)(t)_{H}D_{1,\,t}^{-\alpha}(gh)(t), \end{split}$$

where $\alpha > 0$, t > 1 and this ends the proof.

Theorem 5. Let f, g, h and k be functions on $[0, \infty)$ such that

$$(f(x) - f(y))(g(x) - g(y))(h(x) - h(y))(k(x) - k(y)) \ge 0$$

for all x, y. Then

$$\begin{split} _{H}D_{\mathrm{l},t}^{-\alpha}(fg)(t)_{H}D_{\mathrm{l},t}^{-\alpha}(hk)(t) + _{H}D_{\mathrm{l},t}^{-\alpha}(gk)(t)_{H}D_{\mathrm{l},t}^{-\alpha}(fh)(t) \\ + _{H}D_{\mathrm{l},t}^{-\alpha}(fk)(t)_{H}D_{\mathrm{l},t}^{-\alpha}(gh)(t) + _{H}D_{\mathrm{l},t}^{-\alpha}(fghk)(t)_{H}D_{\mathrm{l},t}^{-\alpha}(1) \\ & \geq _{H}D_{\mathrm{l},t}^{-\alpha}(fhk)(t)_{H}D_{\mathrm{l},t}^{-\alpha}(g)(t) + _{H}D_{\mathrm{l},t}^{-\alpha}(fgk)(t)_{H}D_{\mathrm{l},t}^{-\alpha}(h)(t) \\ & + _{H}D_{\mathrm{l},t}^{-\alpha}(k)(t)_{H}D_{\mathrm{l},t}^{-\alpha}(fgh)(t) + _{H}D_{\mathrm{l},t}^{-\alpha}(f)(t)_{H}D_{\mathrm{l},t}^{-\alpha}(ghk)(t) \end{split}$$
 for all $\alpha > 0, t > 1$.

Proof. By the assumption, for any x, y, we have

$$(fg)(x)(hk)(y) + (hk)(x)(fg)(y) + (gk)(x)(fh)(y)$$

$$+ (fk)(x)(gh)(y) + (gh)(x)(fk)(y)$$

$$+ (fh)(x)(gk)(y) + (fghk)(x) + (fghk)(y)$$

$$\ge (fhk)(x)g(y) + (fgk)(x)h(y) + k(x)(fgh)(y)$$

$$+ (fgh)(x)k(y) + h(x)(fgk)(y)$$

$$+ (ghk)(x)f(y) + g(x)(fhk)(y) + f(x)(ghk)(y).$$

Similar to the proof of Theorem 4, we have

$$(hk)(y)_{H} D_{l,t}^{-\alpha}(fg)(t) + (fg)(y)_{H} D_{l,t}^{-\alpha}(hk)(t)$$

$$+ (fh)(y)_{H} D_{l,t}^{-\alpha}(gk)(t) + (gh)(y)_{H} D_{l,t}^{-\alpha}(fk)(t)$$

$$+ (fk)(y)_{H} D_{l,t}^{-\alpha}(gh)(t) + (gk)(y)_{H} D_{l,t}^{-\alpha}(fh)(t)$$

$$+ H D_{l,t}^{-\alpha}(fghk)(t) + (fghk)(y)_{H} D_{l,t}^{-\alpha}(1)$$

$$\geq (g)(y)_{H} D_{1,t}^{-\alpha}(fhk)(t) + (h)(y)_{H} D_{1,t}^{-\alpha}(fgk)(t)$$

$$+ (fgh)(y)_{H} D_{1,t}^{-\alpha}(k)(t) + (k)(y)_{H} D_{1,t}^{-\alpha}(fgh)(t)$$

$$+ (fgk)(y)_{H} D_{1,t}^{-\alpha}(h)(t) + (f)(y)_{H} D_{1,t}^{-\alpha}(ghk)(t)$$

$$+ (fhk)(y)_{H} D_{1,t}^{-\alpha}(g)(t) + (ghk)(y)_{H} D_{1,t}^{-\alpha}(f)(t).$$

Similar to the proof of Theorem 4, we can write

$$\begin{split} &_{H}D_{1,t}^{-\alpha}(fg)(t)_{H}D_{1,t}^{-\alpha}(hk)(t) + {}_{H}D_{1,t}^{-\alpha}(gk)(t)_{H}D_{1,t}^{-\alpha}(fh)(t) \\ &+ {}_{H}D_{1,t}^{-\alpha}(fk)(t)_{H}D_{1,t}^{-\alpha}(gh)(t) + {}_{H}D_{1,t}^{-\alpha}(fghk)(t)_{H}D_{1,t}^{-\alpha}(1) \\ &\geq {}_{H}D_{1,t}^{-\alpha}(fhk)(t)_{H}D_{1,t}^{-\alpha}(g)(t) + {}_{H}D_{1,t}^{-\alpha}(fgk)(t)_{H}D_{1,t}^{-\alpha}(h)(t) \\ &+ {}_{H}D_{1,t}^{-\alpha}(k)(t)_{H}D_{1,t}^{-\alpha}(fgh)(t) + {}_{H}D_{1,t}^{-\alpha}(f)(t)_{H}D_{1,t}^{-\alpha}(ghk)(t), \end{split}$$

where $\alpha > 0$, t > 1 and this ends the proof.

4. Applications

Now using the results of Section 3, we give some special inequalities.

Example 1. The assertion follows from Theorem 4 applied for f(x) = g(x) = h(x) = k(x) = x on $[0, \infty)$ and $\alpha = 1$.

Under the assumptions Theorem 4, we have inequality,

$$(x - y)(x - y)(x + y)(x + y) \ge 0,$$

 $x^4 + y^4 \ge 2x^2y^2.$

$$\frac{1}{4}(t^4 - 1) \cdot \frac{\ln t}{\Gamma(2)} + \frac{1}{4}(t^4 - 1) \cdot \frac{\ln t}{\Gamma(2)} \ge 2 \cdot \frac{1}{2}(t^2 - 1) \cdot \frac{1}{2}(t^2 - 1),$$

$$\ln t \ge \frac{t^2 - 1}{t^2 + 1}.$$

Example 2. The assertion follows from Theorem 4 applied for f(x) = g(x) = h(x) = k(x) = x on $[0, \infty)$ and $\alpha = 2$.

Under the assumptions Theorem 4, we have inequality

$$(x - y)(x - y)(x + y)(x + y) \ge 0,$$

 $x^4 + y^4 \ge 2x^2y^2.$

Then

$$\frac{1}{4} \left[\frac{1}{4} (t^4 - 1) - \ln t \right] \cdot \frac{(\ln t)^2}{\Gamma(3)} + \frac{1}{4} \left[\frac{1}{4} (t^4 - 1) - \ln t \right] \cdot \frac{(\ln t)^2}{\Gamma(3)}$$

$$\ge 2 \cdot \frac{1}{2} \left[\frac{1}{2} (t^2 - 1) - \ln t \right] \cdot \frac{1}{2} \left[\frac{1}{2} (t^2 - 1) - \ln t \right],$$

$$(\ln t)^2 \ge \frac{2[(t^2 - 1) - 2 \ln t]^2}{[(t^4 - 1) - 4 \ln t]}.$$

Example 3. The assertion follows from Theorem 4 applied for $f(x) = x + c_1$, $g(x) = xe^x + c_2$, h(x) = x, $k(x) = xe^x$ on $[0, \infty)$ and $\alpha = 1$.

Under the assumptions Theorem 4, we have inequality

$$(x^{2} - y^{2})(x^{2}e^{2x} - y^{2}e^{2y}) \ge 0,$$

$$x^{4}e^{2x} + y^{4}e^{2y} \ge x^{2}y^{2}e^{2x} + x^{2}y^{2}e^{2y}.$$

$$2 \cdot \left(\frac{1}{2}t^{3}e^{2t} - \frac{3}{4}t^{2}e^{2t} + \frac{3}{4}te^{2t} - \frac{3}{8}e^{2t} - \frac{1}{8}e^{2}\right) \cdot \ln t$$

$$\geq 2 \cdot \left[\frac{1}{2}(t^{2} - 1) \cdot \left(\frac{1}{2}te^{2t} - \frac{1}{4}e^{2t} - \frac{1}{4}e^{2}\right)\right],$$

$$\ln t \geq \frac{(t^{2} - 1) \cdot ((2t - 1)e^{2t} - e^{2})}{(4t^{3} - 6t^{2} + 6t - 3)e^{2t} - e^{2}}.$$

Example 4. The assertion follows from Theorem 5 applied for f(x) = g(x) = h(x) = k(x) = x on $[0, \infty)$ and $\alpha = 1$.

Under the assumptions Theorem 5, we have inequality

$$(x - y)^4 \ge 0,$$

$$x^4 + 6x^2y^2 + y^4 \ge 4x^3y + 4xy^3.$$

Then

$$\frac{1}{4}(t^4 - 1) \cdot \frac{\ln t}{\Gamma(2)} + 6 \cdot \frac{1}{2}(t^2 - 1) \frac{1}{2}(t^2 - 1) + \frac{1}{4}(t^4 - 1) \cdot \frac{\ln t}{\Gamma(2)}$$

$$\geq 4 \cdot \frac{1}{3}(t^3 - 1)(t - 1) + 4 \cdot (t - 1) \cdot \frac{1}{3}(t^3 - 1),$$

$$\ln t \geq \frac{(t - 1)(7t^2 - 2t + 7)}{3(t + 1)(t^2 + 1)}.$$

Example 5. The assertion follows from Theorem 5 applied for f(x) = x, $g(x) = x^2$, $h(x) = x^3$, $k(x) = x^4$ on $[0, \infty)$ and $\alpha = 1$.

Under the assumptions Theorem 5, we have inequality

$$(x-y)(x^2-y^2)(x^3-y^3)(x^4-y^4) \ge 0,$$

$$x^{10} + 2x^5y^5 + y^{10} \ge xy^9 + x^2y^8 + x^8y^2 + x^9y.$$

$$\frac{1}{10}(t^{10}-1) \cdot \frac{\ln t}{\Gamma(2)} + 2 \cdot \frac{1}{5}(t^5-1) \cdot \frac{1}{5}(t^5-1) + \frac{1}{10}(t^{10}-1) \cdot \frac{\ln t}{\Gamma(2)}$$

$$\geq (t-1) \cdot \frac{1}{9}(t^9-1) + \frac{1}{2}(t^2-1) \cdot \frac{1}{8}(t^8-1) + \frac{1}{8}(t^8-1) \cdot \frac{1}{2}(t^2-1)$$

$$+ \frac{1}{9}(t^9-1) \cdot (t-1),$$

$$\ln t \ge \frac{400(t-1)(t^9-1) + 225(t^2-1)(t^8-1) - 144(t^5-1)^2}{360(t^{10}-1)}.$$

Acknowledgements

The authors gratefully acknowledge the financial support provided by Faculty of Science and Technology, Thammasat University, Thailand, Contract No. 2015.

References

- [1] P. L. Chebyshev, Sur les expressions approximations des integrales definies par les autres prise entre les memes limites, Proc. Sco. Charkov 2 (1882), 93-98.
- [2] Soumia Belarbi and Zoubir Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math. 10(3) (2009), Article 86, 5 pp.
- [3] Zoubir Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. 1(1) (2010), 51-58.
- [4] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci. 9(4) (2010), 493-497.
- [5] J. Tariboon, S. K. Ntouyas and W. Sudsutad, Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Math. Sci. 2014, Art. ID 869434, 6 pp.
- [6] J. Hadamard, Essai sur l'étude des fonctions données par leur développement de Taylor, Journal de mathématiques pures et appliquées 8 (1892), 101-186.
- [7] V. L. Chinchane and D. B. Pachpatte, On some integral inequalities using Hadamard fractional integral, Malaya J. Math. 1(1) (2012), 62-66.
- [8] V. L. Chinchane and D. B. Pachpatte, A note on some fractional integral inequalities via Hadamard integral, J. Fract. Cal. Appl. 4 (2013), 125-129.
- [9] B. Sroysang, A study on Hadamard fractional integral, Int. J. Math. Anal. 7 (2013), 1903-1906.
- [10] Weerawat Sudsutad, Sotiris K. Ntouyas and Jessada Tariboon, Fractional integral inequalities via Hadamard's fractional integral, Abstr. Appl. Anal. 2014, Art. ID 563096, 11 pp.

- [11] D. Baleanu, J. A. T. Machado and A. C. J. Luo, Fractional Dynamic and Control, Springer, 2012.
- [12] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Vol. 204 of North-Holland Mathematics Studies, Elsevier, Amsterdam, The Netherlands, 2006.