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Abstract 

In this paper, we present some new integral inequalities via Hadamard 
integral and apply these inequalities to construct special inequalities. 

1. Introduction 

In recent years, inequalities are playing a very significant role in all 
fields of mathematics, and have applications in many fields. Consider the 
functional 
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where f and g are two integrable functions which are synchronous on [ ],, ba  

(i.e., ( ( ) ( )( ) ( ) ( )( ) 0≥−− ygxgyfxf  for any [ ]),,, bayx ∈  given in [1]. 

Many researchers have given considerable attention to (1.1) and number of 
inequalities appeared in literature see [2, 7, 8]. 
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Recently many authors have studied integral inequalities on fractional 
calculus using Riemann-Liouville, Caputo derivative, see [2-5] and the 
references therein. 

Another kind of fractional derivative is the fractional derivative due to 
Hadamard [6]. Recently in the literature, there appeared some results on 
fractional integral inequalities using Hadamard fractional integral; see [7-10]. 

The aim of this paper is to establish two integral inequalities using 
Hadamard fractional integral. 

2. Preliminaries 

In this section, we give some preliminaries and basic proposition used in 
this paper. We give some definitions of Hadamard fractional integral as in 
[11, p. 159-171]. The necessary background details are given in the book by 
Kilbas et al. [12]. 

Definition 1. The Hadamard fractional integral of order +∈α R  of a 
function ( ),tf  for all 1>t  is defined as 
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where Γ is the gamma function defined by 

( ) ∫
∞ −α−=αΓ
0

1 ,dxxe x  

where .0>α  Note that ( ) ( ).1 αΓα=+αΓ  

From the above definitions, we can see the difference between Hadamard 
fractional and Riemann-Liouville fractional integrals. The kernel in the 

Hadamard integral has the form of ⎟
⎠
⎞⎜

⎝
⎛

x
tln  instead of the form of ( ).tx −  

In [8], Chinchane and Pachpatte presented a fractional integral inequality 
via Hadamard integral as follows. 
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Theorem 2 [8]. Let f and g be two functions on [ )∞,0  such that 

( ) ( )( ) ( ) ( )( ) 0≥−− ygxgyfxf  

for all x, y. Then 

( ) ( ) ( )
( )

( ( )) ( ( ))tgDtfD
t

tfgD tHtHtH
α−α−

α
α− +αΓ≥ ,1,1,1

ln
1  

for all .1,0 >>α t  

In [9], Sroysang presented new inequalities on Hadamard fractional 
integral as follows. 

Theorem 3 [9]. Let f, g and h be functions on [ )∞,0  such that 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) 0≥+−− yhxhygxgyfxf  

for all x, y. Then 

( ) ( ) ( ) ( ) ( ) ( )thDtfgDtDtfghD tHtHtHtH
α−α−α−α− + ,1,1,1,1  

( ) ( ) ( ) ( ) ( ) ( )tghDtfDtfhDtgD tHtHtHtH
α−α−α−α− +≥ ,1,1,1,1  

for all .1,0 >>α t  

3. Results 

Theorem 4. Let f, g, h and k be functions on [ )∞,0  such that 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) 0≥++−− ykxkyhxhygxgyfxf  

for all x, y. Then 

( ) ( ) ( ) ( ) ( ) ( )tkDtfghDDtfghkD tHtHtHtH
α−α−α−α− + ,1,1,1,1 1  

( ) ( ) ( ) ( ) ( ) ( ) ( )thkDtfgDthDtfgkD tHtHtHtH
α−α−α−α− ++ ,1,1,1,1  

( ) ( ) ( ) ( ) ( ) ( )tfhkDtgDtghkDtfD tHtHtHtH
α−α−α−α− +≥ ,1,1,1,1  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tghDtfkDtgkDtfhD tHtHtHtH
α−α−α−α− ++ ,1,1,1,1  

for all .1,0 >>α t  



Booppa Kraisai and Sirichan Vesarachasart 956 

Proof. By the assumption, for any x, y, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )yfghxkykxfghyfghkxfghk +++  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )yfgxhkyhkxfgyfgkxhyhxfgk ++++  
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Consequently, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tfghDykDyfghktfghkD tHtHtH
α−α−α− ++ ,1,1,1 1  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tfgkDyhtkDyfgh tHtH
α−α− ++ ,1,1  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tfgDyhkthDyfgk tHtH
α−α− ++ ,1,1  

( ) ( ) ( ) ( )thkDyfg tH
α−+ ,1  

( ) ( ) ( ) ( ) ( ) ( ) ( )tghkDyftfDyghk tHtH
α−α− +≥ ,1,1  

( ) ( ) ( ) ( ) ( ) ( )tfhkDygtgDyfhk tHtH
α−α− ++ ,1,1  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tgkDyfhtfhDygk tHtH
α−α− ++ ,1,1  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),,1,1 tghDyfktfkDygh tHtH
α−α− ++  

where 1,0 >>α t  and ( ).,1 ty ∈  

Similarly, we can write 

( ) ( ) ( ) ( ) ( ) ( )tkDtfghDDtfghkD tHtHtHtH
α−α−α−α− + ,1,1,1,1 1  

( ) ( ) ( ) ( ) ( ) ( ) ( )thkDtfgDthDtfgkD tHtHtHtH
α−α−α−α− ++ ,1,1,1,1  

( ) ( ) ( ) ( ) ( ) ( )tfhkDtgDtghkDtfD tHtHtHtH
α−α−α−α− +≥ ,1,1,1,1  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),,1,1,1,1 tghDtfkDtgkDtfhD tHtHtHtH
α−α−α−α− ++  

where 1,0 >>α t  and this ends the proof. 
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Theorem 5. Let f, g, h and k be functions on [ )∞,0  such that 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) 0≥−−−− ykxkyhxhygxgyfxf  

for all x, y. Then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tfhDtgkDthkDtfgD tHtHtHtH
α−α−α−α− + ,1,1,1,1  

( ) ( ) ( ) ( ) ( ) ( ) ( )1,1,1,1,1
α−α−α−α− ++ tHtHtHtH DtfghkDtghDtfkD  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )thDtfgkDtgDtfhkD tHtHtHtH
α−α−α−α− +≥ ,1,1,1,1  

( )( ) ( )( ) ( )( ) ( )( )tghkDtfDtfghDtkD tHtHtHtH
α−α−α−α− ++ ,1,1,1,1  

for all .1,0 >>α t  

Proof. By the assumption, for any x, y, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )yfhxgkyfgxhkyhkxfg ++  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )yfkxghyghxfk ++  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )yfghkxfghkygkxfh +++  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )yfghxkyhxfgkygxfhk ++≥  

( ) ( ) ( ) ( ) ( ) ( )yfgkxhykxfgh ++  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).yghkxfyfhkxgyfxghk +++  

Similar to the proof of Theorem 4, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )thkDyfgtfgDyhk tHtH
α−α− + ,1,1  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tfkDyghtgkDyfh tHtH
α−α− ++ ,1,1  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tfhDygktghDyfk tHtH
α−α− ++ ,1,1  

( ) ( ) ( ) ( ) ( )1,1,1
α−α− ++ tHtH DyfghktfghkD  



Some Hadamard-type Inequalities on Fractional Integral … 959 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tfgkDyhtfhkDyg tHtH
α−α− +≥ ,1,1  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tfghDyktkDyfgh tHtH
α−α− ++ ,1,1  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tghkDyfthDyfgk tHtH
α−α− ++ ,1,1  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).,1,1 tfDyghktgDyfhk tHtH
α−α− ++  

Similar to the proof of Theorem 4, we can write 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tfhDtgkDthkDtfgD tHtHtHtH
α−α−α−α− + ,1,1,1,1  

( ) ( ) ( ) ( ) ( ) ( ) ( )1,1,1,1,1
α−α−α−α− ++ tHtHtHtH DtfghkDtghDtfkD  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )thDtfgkDtgDtfhkD tHtHtHtH
α−α−α−α− +≥ ,1,1,1,1  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),,1,1,1,1 tghkDtfDtfghDtkD tHtHtHtH
α−α−α−α− ++  

where 1,0 >>α t  and this ends the proof. 

4. Applications 

Now using the results of Section 3, we give some special inequalities. 

Example 1. The assertion follows from Theorem 4 applied for ( ) =xf  

( ) ( ) ( ) xxkxhxg ===  on [ )∞,0  and .1=α  

Under the assumptions Theorem 4, we have inequality, 

( ) ( ) ( ) ( ) ,0≥++−− yxyxyxyx  

.2 2244 yxyx ≥+  
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t
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Example 2. The assertion follows from Theorem 4 applied for ( ) =xf  

( ) ( ) ( ) xxkxhxg ===  on [ )∞,0  and .2=α  

Under the assumptions Theorem 4, we have inequality 

( ) ( ) ( ) ( ) ,0≥++−− yxyxyxyx  

.2 2244 yxyx ≥+  
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Example 3. The assertion follows from Theorem 4 applied for ( ) =xf  

( ) ( ) ( ) xx xexkxxhcxexgcx ==+=+ ,,, 21  on [ )∞,0  and .1=α  

Under the assumptions Theorem 4, we have inequality 

( ) ( ) ,0222222 ≥−− yx eyexyx  

.2222222424 yxyx eyxeyxeyex +≥+  
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Example 4. The assertion follows from Theorem 5 applied for ( ) =xf  

( ) ( ) ( ) xxkxhxg ===  on [ )∞,0  and .1=α  

Under the assumptions Theorem 5, we have inequality 

( ) ,04 ≥− yx  

.446 334224 xyyxyyxx +≥++  

Then 
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Example 5. The assertion follows from Theorem 5 applied for ( ) ,xxf =  

( ) ( ) ( ) 432 ,, xxkxxhxxg ===  on [ )∞,0  and .1=α  

Under the assumptions Theorem 5, we have inequality 

( ) ( ) ( ) ( ) ,0443322 ≥−−−− yxyxyxyx  

.2 928829105510 yxyxyxxyyyxx +++≥++  

Then 
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( ) ( ) ( ) ( ) ( )
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11441122511400ln 10
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