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Abstract 

An estimator of the variance function of a compound cyclic Poisson 
process is constructed and investigated. We do not assume any 
particular parametric form for the intensity function except that it is 
periodic. Moreover, we consider the case when there is only a single 
realization of the Poisson process observed in a bounded interval. The 
proposed estimator is proved to be weakly and strongly consistent 
when the size of the interval indefinitely expands. In addition, 
asymptotic approximations to the bias and variance of the proposed 
estimator are computed. 

1. Introduction 

Let ( ){ }0, ≥ttN  be a Poisson process with (unknown) locally integrable 
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intensity function λ. We consider the case when the intensity function λ is             
a periodic function with (known) period .0>τ  We do not assume any 
(parametric) form of λ except that it is periodic, that is, the equality 

( ) ( )sks λ=τ+λ  (1.1) 

holds for all 0≥s  and ,N∈k  where N  denotes the set of natural numbers. 
This condition of intensity function is also considered in [4]. 

Let ( ){ }0, ≥ttY  be a process with 

( )
( )∑ =

=
tN

i iXtY
1

,  (1.2) 

where { }1, ≥iXi  is a sequence of independent and identically distributed 

nonnegative random variables with mean μ and variance ,2σ  which is also 

independent of the process ( ){ }.0, ≥ttN  The process ( ){ }0, ≥ttY  is said to 

be a compound cyclic Poisson process. 

The model presented in (1.2) is a generalization of the (well known) 
compound Poisson process, which assumes that ( ){ }0, ≥ttN  is a 

homogeneous Poisson process. 

There are many applications of the compound Poisson model. Some 
examples are as follow. Application of the compound Poisson model in 
physics can be seen in [2], while its application in insurance and financial 
problem can be found in [1]. In addition, application of the compound 
Poisson model in demography can be seen in [5], in geology can be seen in 
[7], and in biology can be found in [8]. 

Suppose that, for some ,Ω∈ω  a single realization ( )ωN  of the cyclic 

Poisson process ( ){ }0, ≥ttN  defined on a probability space ( )P,, FΩ  

with intensity function λ is observed, though only within a bounded interval 
[ ].,0 n  Furthermore, suppose that for each data point in the observed 

realization ( ) [ ],,0 nN ∩ω  say ith data point [ ]( ),,0...,,2,1 NNi =  its 

corresponding random variable iX  is also observed. In [9], an estimator for 



      Estimating the Variance Function of a Compound Cyclic Poisson … 913 

the mean function of the process ( ){ }0, ≥ttY  has been constructed and its 

consistency has been proved. Our goals in this paper are to construct an 
estimator for the variance function of the process ( ){ }0, ≥ttY  using the 

observed realization, to prove its consistency, and to compute asymptotic 
approximations to the bias and variance of the proposed estimator. 

The variance function of ( ),tY  denoted by ( ),tV  is given by 

( ) ( )[ ] [ ] ( ) 2
2
1 μΛ== tXEtNEtV  

with ( ) ( )∫ λ=Λ
t

dsst
0

.  Let ,τ⎥⎦
⎥

⎢⎣
⎢
τ

−= tttr  where for any real number ⎣ ⎦xx,  

denotes the largest integer less than or equal to x, and let also ., ⎥⎦
⎥

⎢⎣
⎢
τ

=τ
tkt  

Then, for any given real number ,0≥t  we can write ,, rt tkt +τ= τ  with 

.0 τ<≤ rt  Let ( )∫
τ
λ

τ
=θ

0
,1 dss  that is, the global intensity of the cyclic 

Poisson process ( ){ }.0, ≥ttN  We assume that 

.0>θ  (1.3) 

Then, for any given ,0≥t  we have 

( ) ( )rt tkt Λ+τθ=Λ τ,  

which implies 

( ) ( ( )) .2, μΛ+τθ= τ rt tktV  

2. The Estimator and Main Results 

The estimator of the variance function ( )tV  using the available data set 

at hand is given by 

( ) ( ( )) ,ˆˆˆˆ ,2, nrnntn tktV μΛ+θτ= τ  (2.1) 

where 
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[ ]( )∑
−

=τ

τ

τ+ττ
τ

=θ
1

0,

,

,,1ˆ
nk

kn
n kkNk  

( ) [ ]( )∑ −

=τ

τ +ττ=Λ
1

0,

, ,1ˆ nk
k r

n
rn tkkNkt  

and 

[ ]( )

[ ]( )

∑
=

=μ
nN

i
in XnN

,0

1

2
,2 ,,0

1ˆ  

with ,, ⎥⎦
⎥

⎢⎣
⎢
τ

=τ
nkn  and the understanding that ,0ˆ ,2 =μ n  when [ ]( ) .0,0 =nN  

Thus, ( ) ,0ˆ =tVn  when [ ]( ) .0,0 =nN  

Our main results are presented in the following four theorems. 

Theorem 1 (Weak consistency). Suppose that the intensity function λ 
satisfies (1.1) and is locally integrable. If, in addition, ( )tY  satisfies 

condition of (1.2), then 

( ) ( )tVtV
p

n →ˆ  

as .∞→n  Hence, ( )tVn̂  is a weakly consistent estimator of ( ).tV  

Theorem 2 (Strong consistency). Suppose that the intensity function λ 
satisfies (1.1) and is locally integrable. If, in addition, ( )tY  satisfies 

condition of (1.2), then 

( ) ( )tVtV
sa

n
.

ˆ →  

as .∞→n  Hence, ( )tVn̂  is a strongly consistent estimator of ( ).tV  

Theorem 3 (Asymptotic approximation to the bias). Suppose that the 
intensity function λ satisfies (1.1) and is locally integrable. If, in addition, 
( )tY  satisfies condition of (1.2), then 
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[ ( )] ( ) ( )n
nn e

e
tVtVBias −
θ +−= oˆ  

as .∞→n  

Theorem 4 (Asymptotic approximation to the variance). Suppose that 
the intensity function λ satisfies (1.1) and is locally integrable. If, in addition, 
( )tY  satisfies condition of (1.2), then 

[ ( )] ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
θμ+Λτμ+Λμ+

θμ
σ= 2

22
2

2
2

2
2

2

2
2 121ˆ

n
tttttV

ntVVar rrn O  (2.2) 

as .∞→n  

We note that, since the ( ( ))tVbias n̂
2  is of smaller order than ( ),2−nO  as 

,∞→n  we also have that asymptotic approximation to the Mean Squared 
Error of our estimator is given by the r.h.s. of (2.2). 

3. Some Technical Lemmas 

In this section, we present some results which are needed in the proofs of 
our theorems. 

Throughout this paper, for any random variables nX  and X on a 

probability space ( ),,, PFΩ  we write XX
c

n →  to denote that nX  

converges completely to X as .∞→n  We say that nX  converges 

completely to X if, for every ( )∑∞
= ∞<ε>−>ε 1 .,0 n n XXP  

Lemma 1. Suppose that the intensity function λ satisfied (1.1) and is 
locally integrable. Then 

,ˆ θ→θ
p

n  (3.1) 

,ˆ θ→θ
c

n  (3.2) 

( ) ( ),ˆ r
p

rn tt Λ→Λ  (3.3) 
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( ) ( ),ˆ r
c

rn tt Λ→Λ  (3.4) 

as .∞→n  

Proof. Proofs of (3.1) and (3.2) are similar to the proofs of Lemma 2 and 
Lemma 3 of [9], while proofs of (3.3) and (3.4) are similar to the proofs of 
Lemma 4 and Lemma 5 of [9]. Hence, these are omitted. 

Lemma 2. Suppose that the intensity function λ satisfied (1.1) and is 
locally integrable. If, in addition, (1.3) holds, then with probability 1, 

[ ]( ) ∞→NN ,0  (3.5) 

as .∞→n  

Proof. We refer to [9]. 

4. Proofs of Theorems 1, 2, 3 and 4 

Proof of Theorem 1. By (2.1), (3.1) and (3.3), to prove Theorem 1, it 
remains to check 

2,2ˆ μ→μ
p

n  (4.1) 

as .∞→n  Since { }1, ≥iXi  is a sequence of independent and identically 

distributed nonnegative random variables, we also have that { }1,2 ≥iXi  is a 

sequence of independent and identically distributed random variables. By 
Lemma 2 and the weak law of large numbers, we have (4.1). This completes 
the proof of Theorem 1. 

Proof of Theorem 2. By (2.1), to prove Theorem 2, it suffices to check 

,ˆ
.
θ→θ

sa
n  (4.2) 

( ) ( )r
sa

rn tt Λ→Λ
.

ˆ  (4.3) 

and 
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2
.

,2ˆ μ→μ
sa

n  (4.4) 

as ∞→n  (cf. [3]). By (3.2) of Lemma 1 and the Borell-Cantelli Lemma, we 
have (4.2). Similarly, (3.4) of Lemma 1 and the Borell-Cantelli Lemma also 
lead to (4.3). By Lemma 2 and the strong law of large numbers, we obtain 
(4.4). This completes the proof of Theorem 2. 

Proof of Theorem 3. Expected value of ( )tVn̂  can be computed as 

follows: 

[ ( )] [ [ ( ) [ ]( )]]]nNtVEEtVE nn ,0ˆˆ |=  

[ ( ) [ ]( ) ] [ ]( )( )∑
∞

=

==|=
0

,0,0ˆ
m

n mnNPmnNtVE  

[ ( ) [ ]( ) ] [ ]( )( )∑
∞

=

==|=
1

,,0,0ˆ
m

n mnNPmnNtVE  

due to ( ) ,0ˆ =tVn  when [ ]( ) .0,0 =nN  

Now we note that, by Lemma 1 and Lemma 2 of [9], we have [ ] θ=θnE ˆ  

and [ ( )] ( ).ˆ rrn ttE Λ=Λ  A simple argument also shows that 

[ [ ]( ) ] .,0ˆ 2,2 μ==|μ mnNE n  

By (2.1) and nothing that n,2μ̂  is independent of nθ̂  and ( ),ˆ rn tΛ  we have 

[ ( )] ( ( )) [ ]( )( )∑
∞

=
τ =μΛ+τθ=

1
2, ,0ˆ

m
rtn mnNPtktVE  

( ( )) [ ]( )( )∑
∞

=
τ =μΛ+τθ=

1
2, ,0

m
rt mnNPtk  
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( ( )) [ ]( )( )( )0,012, =−μΛ+τθ= τ nNPtk rt  

( ( )) ( ( ) ).12,
n

rt etk Λ−
τ −μΛ+τθ=  

Since ( ) ( ) ( )∫ +θ=λ=Λ
n

ndssn
0

,1O  as ,∞→n  we obtain 

[ ( )] ( ( )) ( ( ) )1
2, 1ˆ O+θ−

τ −μΛ+τθ= n
rtn etktVE  

( ) ( ( ) )11 O+θ−−= netV  

( ) ( ) ( )n
n e

e
tVtV −
θ +−= o  

as ,∞→n  and Theorem 3 follows.  

Proof of Theorem 4. The variance of ( )tVn̂  can be computed as follows: 

[ ( )] [( ( )) ] ( [ ( )]) .ˆˆˆ 22 tVEtVEtVVar nnn −=  (4.5) 

The first term on the r.h.s. of (4.5) can be computed as follows: 

[( ( )) ] [ [( ( )) [ ]( )]]NNtVEEtVE nn ,0ˆˆ 22 |=  

[( ( )) [ ]( ) ] [ ]( )( )∑
∞

=

==|=
0

2 ,0,0ˆ
m

n mNNPmNNtVE  

[( ( )) [ ]( ) ] [ ]( )( )∑
∞

=

==|=
1

2 ,,0,0ˆ
m

n mNNPmNNtVE  

due to ( ) ,0ˆ =tVn  when [ ]( ) .0,0 =NN  

First, we compute 

[( ( )) [ ]( ) ]mNNtVE n =| ,0ˆ 2  

( ( ))
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Λ+θτ= ∑

=
τ

2

1

2
,

1ˆˆ
m

i
irnnt X

m
tkE  



      Estimating the Variance Function of a Compound Cyclic Poisson … 919 

[(( ( ))) ] .1ˆˆ
2

1

22
, ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Λ+θτ= ∑

=
τ

m

i
irnnt XmEtkE  (4.6) 

The first expected value on the r.h.s. of (4.6) can be computed as 
follows: 

[ ] [ ( )] [( ( )) ].ˆˆˆ2ˆ 2
,

222
, rnrnntnt tEtEkEk Λ+Λθτ+θτ ττ  (4.7) 

Now we note that, by Lemma 1 and Lemma 2 of [6], we have 

[ ] 2
,

2ˆ θ+
τ

θ=θ
τn

n kE  and [( ( )) ] ( ) ( )( ) .ˆ 2
,

2
r

n
r

rn tk
ttE Λ+Λ=Λ
τ

 By (4.8) of [9], 

we have [ ( )] ( ) ( ) .ˆˆ
, τ

Λ
+θΛ=Λθ

τn
r

rrnn k
tttE  Then, the quantity in (4.7) can be 

written as 

( ) ( ) ( ) ( )( )2
,,

,
2

,
22

, 2 r
n

r
n

r
rt

n
t tk

t
k

ttkkk Λ+
Λ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τ

Λ
+θΛτ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
θ+

τ
θτ

ττ
τ

τ
τ  

( )
( ) ( ) ( )( ) .

2
2 2

,,

,
,

222
,

,

2
,

r
n

r
n

rt
rtt

n

t tk
t

k
tk

tkkk
k

Λ+
Λ

+
Λ

+Λτθ+θτ+
τθ

=
ττ

τ
ττ

τ

τ  

Next, we compute 

[ ] [ ] [ ]

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑ ∑∑∑
= = ==

≠

m

i

m

i

m

j
jii

m

i
i

ij

XEXEXE
m

XmE
1 1 1

224
2

2

1

2 11  

( [ ] ( ) ( [ ]) )22
1

24
12

1 XEmmXmE
m

−+=  

,1 2
2

2
2 σ+μ= m  

where ( ).2
1

2
2 XVar=σ  Then, we have 
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[( ( )) [ ]( ) ]mNNtVE n =| ,0ˆ 2  

( )
( ) ( ) ( )( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Λ+Λ+

Λ
+Λτθ+θτ+

τθ
=

ττ

τ
ττ

τ

τ 2
,,

,
,

222
,

,

2
, 2

2 r
n

r
n

rt
rtt

n

t tk
t

k
tk

tkkk
k

 

.1 2
2

2
2 ⎟

⎠
⎞⎜

⎝
⎛ σ+μ× m  

Therefore, 

[( ( )) ]2ˆ tVE n  

[ [( ( )) [ ]( )]]NNtVEE n ,0ˆ 2 |=  

( )
( ) ( ) ( )( )∑

∞

= ττ

τ
ττ

τ

τ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Λ+

Λ
+

Λ
+Λτθ+θτ+

τθ
=

1

2
,,

,
,

222
,

,

2
, 2

2
m

r
n

r
n

rt
rtt

n

t tk
t

k
tk

tkkk
k

 

[ ]( )( )mNNPm =⎟
⎠
⎞⎜

⎝
⎛ σ+μ× ,01 2

2
2
2  

( )
( ) ( ) ( )( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Λ+Λ+

Λ
+Λτθ+θτ+

τθ
=

ττ

τ
ττ

τ

τ 2
,,

,
,

222
,

,

2
, 2

2 r
n

r
n

rt
rtt

n

t tk
t

k
tk

tkkk
k

 

[ ]( )( ) [ ]( )( ) .,01,0
1 1

2
2

2
2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=σ+=μ× ∑ ∑

∞

=

∞

=m m
mNNPmmNNP  

A simple calculation shows that 

[ ]( )( ) ( )∑
∞

=

−+==
1

1,0
m

nemNNP O  

and 

[ ]( )( )∑
∞

=
⎟
⎠
⎞

⎜
⎝
⎛+

θ
==

1
2 ,11,01

m nnmNNPm O  (4.8) 

as .∞→n  Proof (4.8) can be seen in [9]. 
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Thus, we obtain 

[( ( )) ]2ˆ tVE n  

( )
( ) ( ) ( )( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Λ+Λ+

Λ
+Λτθ+θτ+

τθ
=

ττ

τ
ττ

τ

τ 2
,,

,
,

222
,

,

2
, 2

2 r
n

r
n

rt
rtt

n

t tk
t

k
tk

tkkk
k

 

( ( )) .111 2
2
2

2
2 ⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+

θ
σ++μ× −

nne n OO  

Simplifying this quantity, and after some algebra, we obtain 

[( ( )) ]2ˆ tVE n  

( )( ) ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
θμ+Λτμ+Λμ+

θμ
σ

+= 2
22

2
2
2

2
2

2

2
22 121

n
tttttV

ntV rr O  

as .∞→n  Combining this result and Theorem 3, we obtain Theorem 4.  
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