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Abstract

A simple graph G(V, E) admits an (a, d) -H-antimagic total labeling
if every edge in E(G) belongs to at least one subgraph of G
isomorphic to H and there exists a bijection f :V(G)UE(G) —»
{1,2,..,|V(G)|+|E(G)|} such that for all subgraphs H’

isomorphic to H, the set of H-weights, w(H') =) f(v)+

veV (H')
zeeE(H’) f(e) constitutes an arithmetic progression a, a+d, ...,

a+(t-1)d, where a and d are some positive integers and t is
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the number of subgraphs of G isomorphic to H. Moreover, if
f(V(G))=1{l 2, ... |V(G)|}, then G is called a super (a,d)-H-
antimagic. This work aims at to study super (a, d)-H-antimagic total

labeling on corona of a wheel k-multilevel corona with a cycle.
1. Introduction

The concept of H-magic labeling was first introduced by Gutiérrez
and Lladoé [2] in 2005, which generalized the concept of magic valuation
originated by Rosa [10]. Let H and G(V, E) be finite simple graphs

with every edge of G in at least one subgraph isomorphic to H. A
bijection f :V(G)UE(G) - {1, 2, .., V(G)|+| E(G)|} is an H-magic total
labeling of G if there exists a positive integer m(f) called the magic sum
such that for any subgraph H'(V', E') of G isomorphic to H, the sum
ZVGV' f(v)+zeeE’ f(e) equals to m(f). When f(v),oy =1L 2, ... |V [},

we say that G is H-supermagic.

Many results on H-magic total labelings of a graph have been found.
Gutiérrez and Llad6 [2] proved that a star S,; and a complete bipartite Km, n
are both Sy, -supermagic, and a path B, and a cycle are R,-supermagic.
Lladé and Moragas [6] found that some graphs such as wheels, windmills,
and books are C,, -magic graphs. Maryati et al. [8] showed that some classes
of trees are path R, -supermagic. Jeyanthi and Selvagopal [5] proved that

shackles and amalgamations are H-supermagic for some H. In [11], Roswitha
and Baskoro showed that a caterpillar, a double star, a firecracker and a
banana tree graph admit H-supermagic. Recently, Marbun and Salman [7]
have found that a wheel corona k-multilevel with a cycle is a wheel-
supermagic.

In 2009, Inayah et al. [3] introduced (a, d)-H-antimagic total labeling
by combining H-magic total labeling and (a, d)-edge-antimagic total
labeling. Suppose that G admits H-total labeling. Then an (a, d)-H-
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antimagic total labeling is a bijective function f :V(G)U E(G) — {1, 2, ...,
[V(G)|+| E(G)[} such that for all subgraphs H' isomorphic to H, the
set of H-weights, w(H') = ZVEV(H') f(v)+ ZeeE(H’) f(e) constitutes an
arithmetic progression a, a +d, ..., a+ (t —1)d, where a and d are some

positive integers and t is the number of subgraphs of G isomorphic to H.

Inayah et al. [3] proved that a fan F, admits an (a, d)-cycle C, -antimagic

total labeling for some d and in [4] showed that shackles of a connected

graph H are super (@, d)-H-antimagic. Recent results are found in Roswitha
et al. (see [12] and [13]).

In this paper, we find a super (a, d)-H-antimagic covering on a wheel
k-multilevel corona with a cycle W,, ® C,,, where H =W,,. Yero et al. [14]
defined that graph G corona graph H, denoted by G ® H, is a graph obtained
from G and |V(G)| copies of H, namely Hi, Ho, ..., H|v(G)| then joined
every V; € V(G) to all vertices in V(H;). Let k be a positive integer. Graph

G k-multilevel corona with graph H, denoted by G ofH , 1s a graph defined

by (G @k_lH)(D H, for k > 2.

2. Technique of Partitioning a Multiset

A multiset is a set that allows the existence of same elements in it

(Maryati et al. [9]). Let X be a set containing some positive integers. We use

the notation [a, b] to mean {x € N|a < x < b} and =X tomean » . X

For any k € N, the notation k + [a, b] means {k + x|x € [a, b]}. According

to Gutiérrez and Lladé [2], the set X is k-equipartition if there exist k subsets
[X]

of X, say Xy, Xa, s Xg such that [JS X = X and | X;] =L for

every i € [1, k.
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The union operation of a multiset provides {1} |+ {1, 2} = {l, 1, 2}. Let Y

be a multiset containing positive integers. Then Y is said to be k-balanced if

there exist k subsets of Y, i.e., Y|, Ys, ..., Y such that for every i € [1, k],

= |Lk| oY = % e N and WX,Y; =Y [9]. In 2013, Inayah et al. [4]

introduced (k, 8)-anti balanced as follows. The multiset Y is (k, 8)-anti

i |

balanced if there exist k subsets of Y, say Y}, Y5, ..., Yk such that for every
[Y]
k b

is satisfied. Then we have the following lemmas:

ielL k], |Yi|= WY, =Y, and for i € [L k —1], ZY;,; —3Y; =&

Lemma 2.1. Let k and h be two positive integers and k > 2. If
X =1, kh], then it is (k, h)-anti balanced.

Proof. We arrange the set of integers X = [1, kh] ina k x h matrix A as

given below:

1 k+1 -+ (h-Dk+1
2 k+2 -+ (h=-Dk+2

A=|T . ‘ :
k 2k kh

Here A=(aj j).p, where @ j=k(j-1)+i, for 1<i<k and

h

1< j<h Define X;= Zj:l

aj j. It can be verified that every subset
Xj has h elements and u{‘zlxi = X. For every 1<i<Kk, the sum of
all elements in Xj is Y Xj= Z?:lxi :%kh(h—l)+hi, and d =

> Xy =D X =h O

Lemma 2.2. Let k and h be positive integers and k be even. If
X =1, kh], then X'is (k, k)-anti balanced.
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Proof. Let Xij be a jth-element of the subset X; which can be defined as

i, for j =1,
k . . [, k] . [4k
§(k+j—l)+|, forle_l,z_ andje_Z,E},
) koo . . [k 7 . [,k
Xj = .2(1 1) +1i, forle_2+1,k_andje_2,2},
k. . . [ k] . [k
§j+l, forle_l,z_andje_zﬁtl,k},
Kk j—2)+i, forie| st k|and jelXen k]
2 ’ 12 7 12
SRS
Then the sum of all elements in X; for i e [l, k] is =X; = ki + S
It is clear that d = EXj,; — ZXj =k, then the multiset X is (k, k)-anti
balanced. H

3. Main Results

3.1. A wheel k-multilevel corona with a cycle W, @kCn

A wheel W), is a graph obtained by joining n vertices of C,, with one
central vertex (Baca and Miller [1]). Let G be a graph W, @kCn. Then G

consists of one wheel W,, and Z:(:1(n +1)' cycles named Cij for i e [1, k]

and je[l, (n+ l)i]. The order of G is |V(G)| = (n+ 1)k+1 and the size is
K .

|[E@G)|=2n)._,(n+1).

Theorem 3.1. Let n >3 and k > 2 be positive integers. Then G is a
super (a, d)-W,, -antimagic total labeling for d = 3n + 1.

Proof. Let X = {1, (n+ 1)k+1 + 2”2:(20 (n+ l)i}. Partition X into two

sets: Y = [L, (n+ 1)¥*!] and Z =(n+1)**! 4{1, 2”2:10(””)@- Now, we
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define a total labeling f on G as follows. We use the elements of Y to label all

the vertices of W, G)kCn and the elements of Z to label all the edges of

W, @kCn. Here, we have two cases to be considered.

Case 1. nis even.
Let Y be partitioned into YI, 1<I<k+1.
(1) For | =1, we define Y' = [L, (n + )¥*1].

Apply Lemma 2.1 to partition Y! into (n +1)k subsets such that

S} =%n(n+1)k+1+(n+1), and | Y |=n+1, for e[l (n+1)¥]

Then it is obvious that ZYi1+1 - ZYi1 =n+1.

(2) For 2<1<k+1, we set that Y'= %(n +1)k_|(n2 +2n+2)
Z:: (n+1) +[L, M+ 1*"*2]. Then Y' can be partitioned into
(n +l)k_|+1 subsets. By using Lemma 2.1, we have |YiI |=n+1 and
ZYi' =Z|j:2(n+1)k+3_j +%n(n+1)k+1 +(n+1)i, for e[l (n+1)< 1.

The difference between ZYiIH and ZYiI is n+1 and we also have

| 1-1
ZYI _ZY(',H_I)I(—H—Z =n+1

(3) For I =k+1, let Y! =%(n+1)k_|(n2 20+ 2 T+ 1)+

k—1+2 k+1 _ ~ok+1 k+3—j , 1 k+1
[1, (n+1) ]. Then we have > Y*" = ijz(n +1) +§n(n +1)
+(n+1) with | yk+l | = n+1, and hence sy K+ ZYnk+1 =n+1.
Case 2. nis odd.

(1) For | =1, we define and partition Y! similar to Case 1.
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(2) For k >2 and 2 < <k, we also define and partition Y! as in
Case 1.

3) For l=k, let Y'= %(n 223 ) +
[, (n+1)<1*2].

Now we use Lemma 2.2 to partition YK into n+1 subsets such that
k _ ok k+3-j 1 k+1 : :
DY _ijz(n+1) +§n(n+1) +(n+1)i, for iefl,n+1]

This gives us |Yk |=n+1. It is clear that YK YK =n+1 and

s —syk =n

(n+1)?
(4) For 1=k +1, let Y' ={Xij|xij cYX}, where j=n+3 for ie[3,n+1]
and i =1 and jznTJrs for i =2. We find that |Yk+1|=n+1 and

k+1 _ ok+1 k+3—j , 1 k+1 k+1 k
DY _ijz(nﬂ) +§n(n+1) +(n+1), and Y YT -3V

n+1.

Next, we use the elements of YK+ {0 label the set of vertices in Wh.

Then label the set of vertices in C} with the elements of set Y \YX*! for
j € [1, n +1]. Meanwhile, label the set of vertices in Cij with the elements
of set YKFTITWKe2T o e, (n +1)i] and ie(2,k]. We have

Z:(:o(n+1)i subgraphs of W, @ka isomorphic to W,. Let he
[1, Z:‘zo(n+1)i}. Then the vertex weight of th is f(V(th))z

%n(n 1) 4 (n+Dh.
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Furthermore, we partition Z into Z:(:O(nﬂ)i subsets according to

Lemma 2.1 such that the sum of labels in Zj is
k .
2in+ (4n = D ((n+ D' = 1)+ 2n for h e {1, Zi_o(n + 1)'}.

Use all elements of Z; to label all the edges in th by considering the order

of f(V (th )). The th -weight is

ww,1) = %n(n R 4 (n+ 1)h+ 2hn + (4n = 1) ((n + D} —1) + 2n
~On k+1 k+1
_7(n+1) —(n+1D)" +3hn-2n+h+1.

We obtain that d = WthH) - W(th) =3n+1, and a = 97n(n + l)k+1 -

(n+ 1)k+1 + n + 2. This completes the proof. O

Corollary 3.2. Graph W, @kCn admits
(1) a super (%n(n + ) L+ lj-Wn -antimagic,
(2) a super (%n(n + 1)k+l +2n% +2n+1,4n% +n+ lj-Wn -antimagic.

Figure 3.1 illustrates W), G)kCn for n =3 and k = 2. Tables 3.1-3.4

show how the labels are partitioned according to Theorem 3.1.
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Table 3.1. The partition of Y;' on W; ®°C;

i Y
1 1 | 17| 33 | 49 | 100
2 2 [ 18 | 34 | 50 | 104
3 3 |19 | 35 | 51 | 108
4 4 120 36 | 52 | 112
15 | 15 | 31| 47 | 63 | 156
16 | 16 | 32| 48 | 64 | 160
Table 3.2. The partition of Y;*> on W; ®°C;
i Y
1| 35 | 45| 41 | 43 | 164
2 | 36 | 46 | 42 | 44 | 168
3|37 [39] 47 | 49 | 172
4 | 38 | 40| 48 | 50 | 176
Table 3.3. The partition of Y> on W; ®°C4
Y
41 | 44 | 47 | 48 | 180

791
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Table 3.4. The partition of Z on Wy ®2C3

i 3y,

65 | 8 | 107 | 128 | 149 | 170 | 705
66 | 87 | 108 | 129 | 150 | 171 | 711
67 | 88 | 109 | 130 | 151 | 172| 717
68 | 89 | 110 | 131 | 152|173 | 723

AW N |-

20 | 84 | 105 | 126 | 147 | 168 | 189 | 819
21| 85 | 106 | 127 | 148 | 169 | 190 | 825

@)
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(180159
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@) o
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© @
[165] (144 (188
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0%' 'E'ls. Ll o
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Figure 3.1. A super (a, d)-wheel-antimagic total labeling on W; ®2C3 with
d=3n+1.
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