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Abstract 

A simple graph ( )EVG ,  admits an ( )da, -H-antimagic total labeling 

if every edge in ( )GE  belongs to at least one subgraph of G 

isomorphic to H and there exists a bijection ( ) ( ) →GEGVf ∪:  

( ) ( ){ }GEGV +...,,2,1  such that for all subgraphs H ′  

isomorphic to H, the set of H-weights, ( ) ( )( )∑ ′∈ +=′ HVv vfHw  

( )( )∑ ′∈ HEe ef  constitutes an arithmetic progression ...,,, daa +  

( ) ,1 dta −+  where a and d are some positive integers and t is            
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the number of subgraphs of G isomorphic to H. Moreover, if 
( )( ) ( ){ },...,,2,1 GVGVf =  then G is called a super ( )da, -H-

antimagic. This work aims at to study super ( )da, -H-antimagic total 

labeling on corona of a wheel k-multilevel corona with a cycle. 

1. Introduction 

The concept of H-magic labeling was first introduced by Gutiérrez          
and Lladó [2] in 2005, which generalized the concept of magic valuation 
originated by Rosa [10]. Let H and ( )EVG ,  be finite simple graphs         

with every edge of G in at least one subgraph isomorphic to H. A      
bijection ( ) ( ) ( ) ( ){ }GEGVGEGVf +|→ ...,,2,1: ∪  is an H-magic total    

labeling of G if there exists a positive integer ( )fm  called the magic sum 

such that for any subgraph ( )EVH ′′′ ,  of G isomorphic to H, the sum 

( ) ( )∑ ∑′∈ ′∈+Vv Ee efvf  equals to ( ).fm  When ( ) { },...,,2,1 Vvf Vv =∈  

we say that G is H-supermagic. 

Many results on H-magic total labelings of a graph have been found. 
Gutiérrez and Lladó [2] proved that a star nS  and a complete bipartite nmK ,  

are both hS -supermagic, and a path nP  and a cycle are hP -supermagic. 

Lladó and Moragas [6] found that some graphs such as wheels, windmills, 
and books are nC -magic graphs. Maryati et al. [8] showed that some classes 

of trees are path hP -supermagic. Jeyanthi and Selvagopal [5] proved that 

shackles and amalgamations are H-supermagic for some H. In [11], Roswitha 
and Baskoro showed that a caterpillar, a double star, a firecracker and a 
banana tree graph admit H-supermagic. Recently, Marbun and Salman [7] 
have found that a wheel corona k-multilevel with a cycle is a wheel-
supermagic. 

In 2009, Inayah et al. [3] introduced ( )da, -H-antimagic total labeling 

by combining H-magic total labeling and ( )da, -edge-antimagic total 

labeling. Suppose that G admits H-total labeling. Then an ( )da, -H-
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antimagic total labeling is a bijective function ( ) ( ) { ...,,2,1: →GEGVf ∪  

( ) ( ) }GEGV +  such that for all subgraphs H ′  isomorphic to H, the       

set of H-weights, ( ) ( ) ( )( )( )∑ ∑′∈ ′∈+=′ HVv HEe efvfHw  constitutes an 

arithmetic progression ( ) ,1...,,, dtadaa −++  where a and d are some 

positive integers and t is the number of subgraphs of G isomorphic to H. 
Inayah et al. [3] proved that a fan nF  admits an ( )da, -cycle nC -antimagic 

total labeling for some d and in [4] showed that shackles of a connected 
graph H are super ( )da, -H-antimagic. Recent results are found in Roswitha 

et al. (see [12] and [13]). 

In this paper, we find a super ( )da, -H-antimagic covering on a wheel    

k-multilevel corona with a cycle ,nn CW ⊙  where .nWH =  Yero et al. [14] 

defined that graph G corona graph H, denoted by ,HG⊙  is a graph obtained 

from G and ( )GV  copies of H, namely ( ) ,...,,, 21 GVHHH  then joined 

every ( )GVvi ∈  to all vertices in ( ).iHV  Let k be a positive integer. Graph 

G k-multilevel corona with graph H, denoted by ,HG k⊙  is a graph defined 

by ( ) HHG k ⊙⊙ 1− , for .2≥k  

2. Technique of Partitioning a Multiset 

A multiset is a set that allows the existence of same elements in it 
(Maryati et al. [9]). Let X be a set containing some positive integers. We use 

the notation [ ]ba,  to mean { }bxax ≤≤|∈ N  and XΣ  to mean ∑ ∈Xx x.  

For any ,N∈k  the notation [ ]bak ,+  means [ ]{ }., baxxk ∈|+  According 

to Gutié́rrez and Lladó [2], the set X is k-equipartition if there exist k subsets 

of X, say kXXX ...,,, 21  such that ∪k
i i XX1= =  and k

XXi =  for 

every [ ].,1 ki ∈  
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The union operation of a multiset provides { } { } { }.2,1,12,11 =  Let Y 

be a multiset containing positive integers. Then Y is said to be k-balanced if 
there exist k subsets of Y, i.e., kYYY ...,,, 21  such that for every [ ],,1 ki ∈  

,k
YYi =  N∈Σ=Σ k

YYi  and YYi
k
i ==1  [9]. In 2013, Inayah et al. [4] 

introduced ( )δ,k -anti balanced as follows. The multiset Y is ( )δ,k -anti 

balanced if there exist k subsets of Y, say kYYY ...,,, 21  such that for every 

[ ],,1 ki ∈  ,k
YYi =  ,1 YYi

k
i ==  and for [ ],1,1 −∈ ki  δ=Σ−Σ + ii YY 1  

is satisfied. Then we have the following lemmas: 

Lemma 2.1. Let k and h be two positive integers and .2≥k  If 

[ ],,1 khX =  then it is ( )hk, -anti balanced. 

Proof. We arrange the set of integers [ ]khX ,1=  in a hk ×  matrix A as 

given below: 

( )
( )

.

2

2122
1111

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
+−+
+−+

=

khkk

khk
khk

A  

Here ( ) ,, hkjiaA ×=  where ( ) ijka ji +−= 1, , for ki ≤≤1  and 

.1 hj ≤≤  Define ∑ == h
j jii aX 1 , .  It can be verified that every subset         

iX  has h elements and .1 XXi
k
i ==  For every ,1 ki ≤≤  the sum of         

all elements in iX  is ( )∑ ∑ = +−== h
j ii hihkhXX 1 ,12

1  and =d  

∑ ∑ =−+ .1 hXX ii  ~ 

Lemma 2.2. Let k and h be positive integers and k be even. If 
[ ],,1 khX =  then X is ( )kk, -anti balanced. 
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Proof. Let j
ix  be a jth-element of the subset iX  which can be defined as 

( )

( )

( )⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎥⎦
⎤

⎢⎣
⎡ +∈⎥⎦

⎤
⎢⎣
⎡ +∈+−+

⎥⎦
⎤

⎢⎣
⎡ +∈⎥⎦

⎤
⎢⎣
⎡∈+

⎥⎦
⎤

⎢⎣
⎡∈⎥⎦

⎤
⎢⎣
⎡ +∈+−

⎥⎦
⎤

⎢⎣
⎡∈⎥⎦

⎤
⎢⎣
⎡∈+−+

=

=

.,12and,12for,22

,,12and2,1for,2

,2,2and,12for,12

,2,2and2,1for,12

,1for,

.

kkjkkiijkk

kkjkiijk

kjkkiijk

kjkiijkk

ji

x j
i  

Then the sum of all elements in iX  for [ ]ki ,1∈  is .22

32 kkkiXi ++=Σ            

It is clear that ,1 kXXd ii =Σ−Σ= +  then the multiset X is ( )kk, -anti    

balanced. ~ 

3. Main Results 

3.1. A wheel k-multilevel corona with a cycle n
k

n CW ⊙  

A wheel nW  is a graph obtained by joining n vertices of nC  with one 

central vertex (Bača and Miller [1]). Let G be a graph .n
k

n CW ⊙  Then G 

consists of one wheel nW  and ( )∑ = +k
i

in1 1  cycles named i
jC  for [ ]ki ,1∈  

and [ ( ) ].1,1 inj +∈  The order of G is ( ) ( ) 11 ++= knGV  and the size is 

( ) ( )∑ = += k
i

innGE 0 .12  

Theorem 3.1. Let 3≥n  and 2≥k  be positive integers. Then G is a 
super ( )da, - nW -antimagic total labeling for .13 += nd  

Proof. Let ( ) ( ) .121,1 0
1

⎥⎦
⎤

⎢⎣
⎡ +++= ∑ =

+ k
i

ik nnnX  Partition X into two 

sets: [ ( ) ]11,1 ++= knY  and ( ) ( ) .12,11 0
1

⎥⎦
⎤

⎢⎣
⎡ +++= ∑ =

+ k
i

ik nnnZ  Now, we 
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define a total labeling f on G as follows. We use the elements of Y to label all 

the vertices of n
k

n CW ⊙  and the elements of Z to label all the edges of 

.n
k

n CW ⊙  Here, we have two cases to be considered. 

Case 1. n is even. 

Let Y be partitioned into .11, +≤≤ klY l  

(1) For ,1=l  we define [ ( ) ].1,1 1++= kl nY  

Apply Lemma 2.1 to partition lY  into ( )kn 1+  subsets such that 

( ) ( )∑ +++= + ,112
1 11 nnnY k

i  and 11 +=Σ nYi , for [ ( ) ].1,1 kni +∈  

Then it is obvious that .111
1 +=Σ−Σ + nYY ii  

(2) For ,12 +<≤ kl  we set that ( ) ( )2212
1 2 +++= − nnnY lkl  

( ) [ ( ) ]∑ −
=

+−+++1
1

2 .1,11l
i

lki nn  Then lY  can be partitioned into 

( ) 11 +−+ lkn  subsets. By using Lemma 2.1, we have 1+= nY l
i  and 

( ) ( ) ( )∑ ∑ =
+−+ +++++= l

j
kjkl

i innnnY 2
13 112

11 , for [ ( ) ].1,1 1+−+∈ lkn  

The difference between l
iY 1+Σ  and l

iYΣ  is 1+n  and we also have 

( )∑ ∑ +=− −
+ +− .11

11 2 nYY l
n

l
lk  

(3) For ,1+= kl  let ( ) ( ) ( )∑ −
=

− +++++= 1
1

2 12212
1 l

i
ilkl nnnnY  

[ ( ) ].1,1 2+−+ lkn  Then we have ( ) ( )∑ ∑ +
=

+−++ +++= 1
2

131 12
11k

j
kjkk nnnY  

( )1++ n  with 11 +=+ nY k , and hence .11
1 +=Σ−Σ +
+ nYY k

n
k   

Case 2. n is odd. 

(1) For ,1=l  we define and partition 1Y  similar to Case 1. 
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(2) For 2>k  and ,2 kl <≤  we also define and partition lY  as in  

Case 1. 

(3) For ,kl =  let ( ) ( ) ( )∑ −
=

− +++++= 1
1

2 12212
1 l

i
ilkl nnnnY  

[ ( ) ].1,1 2+−+ lkn  

Now we use Lemma 2.2 to partition kY  into 1+n  subsets such that 

( ) ( ) ( )∑ ∑ =
+−+ +++++= k

j
kjkk

i innnnY 2
13 ,112

11  for [ ].1,1 +∈ ni  

This gives us .1+= nY k  It is clear that 11 +=Σ−Σ + nYY k
i

k
i  and 

( )
.11

11 2 +=Σ−Σ −
+

nYY k
n

k  

(4) For ,1+= kl  let { },kj
i

j
i

l YxxY ∈|=  where 2
3+= nj  for [ ]1,3 +∈ ni  

and ,1=i  and 2
5+= nj  for .2=i  We find that 11 +=+ nY k  and 

( ) ( ) ( )∑∑ +
=

+−++ +++++= 1
2

131 ,112
11k

j
kjkk nnnnY  and ∑ ∑ +

+ − k
n

k YY 1
1  

.1+n  

Next, we use the elements of 1+kY  to label the set of vertices in .nW  

Then label the set of vertices in 1
jC  with the elements of set 1\ +kk YY  for 

[ ].1,1 +∈ nj  Meanwhile, label the set of vertices in i
jC  with the elements 

of set ikik YY −+−+ 21 \ , for [ ( ) ]inj 1,1 +∈  and [ ].,2 ki ∈  We have 

( )∑ = +k
i

in0 1  subgraphs of k
k

n CW ⊙  isomorphic to .nW  Let ∈h  

( ) .1,1 0 ⎥⎦
⎤

⎢⎣
⎡ +∑ =

k
i

in  Then the vertex weight of h
nW  is ( ( )) =h

nWVf  

( ) ( ) .112
1 1 hnnn k +++ +  
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Furthermore, we partition Z into ( )∑ = +k
i

in0 1  subsets according to 

Lemma 2.1 such that the sum of labels in iZ  is 

( ) (( ) ) nnnin k 211142 1 +−+−+ +  for ( ) .1,1
0 ⎥

⎦

⎤
⎢
⎣

⎡
+∈ ∑ =

k
i

inh  

Use all elements of iZ  to label all the edges in h
nW  by considering the order 

of ( ( )).h
nWVf  The h

nW -weight is 

( ) ( ) ( ) ( ) (( ) ) nnnhnhnnnWw kkh
n 211142112

1 11 +−+−+++++= ++  

( ) ( ) .123112
9 11 ++−++−+= ++ hnhnnnn kk  

We obtain that ( ) ( ) ,131 +=−= + nWwWwd h
n

h
n  and ( ) −+= +112

9 knna  

( ) .21 1 +++ + nn k  This completes the proof. ~ 

Corollary 3.2. Graph n
k

n CW ⊙  admits  

(1) a super ( ) n
k Wnnn -1,112

9 1 ⎟
⎠
⎞⎜

⎝
⎛ +++ + -antimagic, 

(2) a super ( ) n
k Wnnnnnn -14,12212

5 221 ⎟
⎠
⎞⎜

⎝
⎛ ++++++ + -antimagic. 

Figure 3.1 illustrates n
k

n CW ⊙  for 3=n  and .2=k  Tables 3.1-3.4 

show how the labels are partitioned according to Theorem 3.1. 
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Table 3.1. The partition of 1
iY  on 3

2
3 CW ⊙  

i     iYΣ  

1 1 17 33 49 100 

2 2 18 34 50 104 

3 3 19 35 51 108 

4 4 20 36 52 112 

      

15 15 31 47 63 156 

16 16 32 48 64 160 

Table 3.2. The partition of 2
iY  on 3

2
3 CW ⊙  

i     iYΣ  

1 35 45 41 43 164 

2 36 46 42 44 168 

3 37 39 47 49 172 

4 38 40 48 50 176 

Table 3.3. The partition of 3Y  on 3
2

3 CW ⊙  

    iYΣ  

41 44 47 48 180 
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Table 3.4. The partition of Z on 3
2

3 CW ⊙  

i       iYΣ  

1 65 86 107 128 149 170 705 

2 66 87 108 129 150 171 711 

3 67 88 109 130 151 172 717 

4 68 89 110 131 152 173 723 

        
20 84 105 126 147 168 189 819 

21 85 106 127 148 169 190 825 

 

Figure 3.1. A super ( )da, -wheel-antimagic total labeling on 3
2

3 CW ⊙  with 

.13 += nd  
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