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Abstract 

The notion of quasi-ideals for rings was introduced by Steinfeld. The 
intersection of a left ideal and a right ideal of R is a quasi-ideal of R 
but a quasi-ideal of R need not be obtained in this way. A quasi-ideal 
Q of R is said to have the intersection property if Q is the intersection 
of a left ideal and a right ideal of R. If every quasi-ideal of R has the 
intersection property, then R is said to have the intersection property 
of quasi-ideals. Let ( )RSUn  be the ring of all strictly upper triangular 
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nn ×  matrices over a ring R. Kemprasit and Juntarakhajorn [3] shows 

that if F is a field, then the ring ( )FSUn  has the intersection property 

of quasi-ideals if and only if .3≤n  In this paper, we provide a 

characterization, when the ring ( )RSUn  has the intersection property 

of quasi-ideals in terms of n, where R is a Euclidean domain. 

1. Introduction and Preliminaries 

For nonempty subsets A, B of a ring R, let AZ  and AB denote, 

respectively, the set of all finite sums of the form ∑ ,iiak  where Z∈ik  and 

Aai ∈  and the set of all finite sums of the form ∑ ,iiba  where Aai ∈  and 

.Bbi ∈  A subring Q of R is called a quasi-ideal of R if .QQRRQ ⊆∩  The 

notion of quasi-ideals for rings was introduced by Steinfeld in [5]. Quasi-
ideals generalize left ideals and right ideals. For a nonempty subset X of a 
ring R, let ( )qX  be the quasi-ideal of R generated by X which is the 

intersection of all quasi-ideals of R containing X [6, p. 11]. In [7], Weinert 
has given the next proposition. 

Proposition 1.1 [7]. For a nonempty subset X of a ring R, 

( ) ( ).XRRXXX q ∩+= Z  

It is well-known that the intersection of a left ideal and a right ideal of R 
is a quasi-ideal of R but a quasi-ideal of R need not be obtained in this way. 
We can see some examples in [6, p. 8] and [1, 3, 4, 8]. We say that a quasi-
ideal Q of R has the intersection property if Q is the intersection of a left 
ideal and a right ideal of R. Then every left ideal and every right ideal of R 
has the intersection property. If every quasi-ideal of R has the intersection 
property, then R is said to have the intersection property of quasi-ideals. 
Commutative rings, rings having a one-sided identity and regular rings          
are the examples of rings having the intersection property of quasi-ideals 
([6], p. 9 and p. 73, respectively). In [8], Zhang et al. have characterized the 
following two known results: 
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Proposition 1.2 [8]. Let X be a nonempty subset of a ring R. Then the 
following statements are equivalent: 

  (i) ( )qX  has the intersection property. 

 (ii) ( ) ( ) ( ) .qXXRXRXX =++ ZZ ∩  

(iii) ( ) ( ) .qXXRXRX ⊆+Z∩  

(iv) ( ) ( ) .qXRXXXR ⊆+Z∩  

Proposition 1.3 [8]. A ring R has the intersection property of quasi-
ideals if and only if for any finite nonempty subset X of R, 

( ) ( ).XRRXXXRXRX ∩∩ +⊆+ ZZ  

Let ( )RSUn  be the ring of all strictly upper triangular nn ×  matrices 

over a ring R. In [3], Kemprasit and Juntarakhajorn have characterized when 
( ),FSUn  where F is a field has the intersection property of quasi-ideals as 

follows: 

Proposition 1.4 [3]. Let F be a field. Then the ring ( )FSUn  has the 

intersection property of quasi-ideals if and only if .3≤n  

The purpose of this paper is to give the necessary and sufficient 
conditions for n that the ring ( )RSUn  has the intersection property of quasi-

ideals where R is a Euclidean domain. 

2. Main Result 

Let R be a Euclidean domain. Then R is a PID and also a GCD domain. 

Lemma 2.1. Let R be a Euclidean domain and { }.0\,, Rcba ∈  Then the 

following statements hold: 

  (i) ( ) .,gcd RbabRaR =+  

 (ii) ( ) ., RbalcmbRaR =∩  
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(iii) ( )( ) ( )( ).,,gcd,,gcd cbalcmcblcma |  

(iv) ( ) ( ).cRbRaRcRbRaR ∩∩ +⊆+  

Proof. (i) and (ii) are clear. 

(iii) Since R is a GCD domain, we have that ( ) ( ).,,gcd balcmbaab =  

We can show that ( )( ) ( )( ).,,gcd,,gcd cbalcmcblcma |  

(iv) By (i) and (ii), we have that 

( ) ( ) ( )( )RcbalcmcRRbacRbRaR ,,gcd,gcd ==+ ∩∩  

and 

( ) ( ) ( )( ) .,,gcd, RcblcmaRcblcmaRcRbRaR =+=+ ∩  

By (iii), we have ( )( ) ( )( ),,,gcd,,gcd cbalcmcblcma |  this implies that 

( )( ) ( )( ) .,,gcd,,gcd RcblcmaRcbalcm ⊆  Hence, ( ) +⊆+ aRcRbRaR ∩  

( ),cRbR ∩  as required. ~ 

Lemma 2.2. Let R be a Euclidean domain such that every additive 
subgroup is an ideal of R. The ring ( )RSU3  has the intersection property of 

quasi-ideals. 

Proof. Let X be a finite nonempty subset of ( ).3 RSU  Then 
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,NQ +  where XQ Z∈  and ( ).3 RXSUN ∈  Therefore, ∈−= NMQ  
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by Lemma 2.1(iv). Therefore, ( ) zyM +=ϕ  for some bRy ∈  and ∈z  

.cRaR ∩  Since ϕ  is isomorphism, there exist 
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( )).3 RXSU  By Proposition 1.3, ( )RSUn  has the intersection property of 

quasi-ideals. ~ 

Lemma 2.3. Let R be an integral domain. If ,4≥n  then the ring 

( )RSUn  does not have the intersection property of quasi-ideals. 

Proof. Let 1 be an identity of R and ( )RSUBA n∈,  be defined by 
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Then 
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By (*), we have 
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By Proposition 1.3, ( )RSUn  does not have the intersection property of 

quasi-ideals. ~ 

Now we are ready to prove our main result. 

Theorem 2.4. Let R be a Euclidean domain such that every additive 
subgroup is an ideal of R. Then the ring ( )RSUn  has the intersection 

property of quasi-ideals if and only if .3≤n  

Proof. If ,2≤n  then ( )RSUn  is a zero ring. It implies that ( )RSUn  has 

the intersection property of quasi-ideals. 

If ,3=n  then by Lemma 2.2, we have that ( )RSU3  has the intersection 

property of quasi-ideals. 

For the converse, assume that ,4≥n  by Lemma 2.3, the ( )RSUn  does 

not have the intersection property of quasi-ideals. 

Hence, the theorem is completely proved. ~ 
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Example 2.5. The ring Z  is the example of ring such that every additive 
subgroup is an ideal. By Theorem 2.4, we have that the ring ( )ZnSU  has the 

intersection property of quasi-ideals if and only if .3≤n  

Remark 2.6. The authors in [2] show that every principal quasi-ideal of 
the ring ( )RSUn  has the intersection property. This implies that quasi-ideal 

in ( )RSUn  which does not have the intersection property must be generated 

by at least two elements. In the proof of Lemma 2.3, we see that there exist 
quasi-ideals in ( )RSUn  ( )4case ≥n  which does not have the intersection 

property generated by two elements. 
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