Far East Journal of Mathematical Sciences (FJMS)

THE INTERSECTION PROPERTY OF QUASI-IDEALS IN RINGS OF STRICTLY UPPER TRIANGULAR MATRICES OVER A EUCLIDEAN DOMAIN

Ronnason Chinram

Algebra and Applications Research Unit
Department of Mathematics and Statistics
Faculty of Science
Prince of Songkla University
Hat Yai, Songkhla 90110
Thailand
e-mail: ronnason.c@psu.ac.th
Centre of Excellence in Mathematics
CHE, Si Ayuthaya Road
Bangkok 10400, Thailand

Abstract

The notion of quasi-ideals for rings was introduced by Steinfeld. The intersection of a left ideal and a right ideal of R is a quasi-ideal of R but a quasi-ideal of R need not be obtained in this way. A quasi-ideal Q of R is said to have the intersection property if Q is the intersection of a left ideal and a right ideal of R. If every quasi-ideal of R has the intersection property, then R is said to have the intersection property of quasi-ideals. Let $S U_{n}(R)$ be the ring of all strictly upper triangular

[^0]$n \times n$ matrices over a ring R. Kemprasit and Juntarakhajorn [3] shows that if F is a field, then the ring $S U_{n}(F)$ has the intersection property of quasi-ideals if and only if $n \leq 3$. In this paper, we provide a characterization, when the ring $S U_{n}(R)$ has the intersection property of quasi-ideals in terms of n, where R is a Euclidean domain.

1. Introduction and Preliminaries

For nonempty subsets A, B of a ring R, let $\mathbb{Z A}$ and $A B$ denote, respectively, the set of all finite sums of the form $\sum k_{i} a_{i}$, where $k_{i} \in \mathbb{Z}$ and $a_{i} \in A$ and the set of all finite sums of the form $\sum a_{i} b_{i}$, where $a_{i} \in A$ and $b_{i} \in B$. A subring Q of R is called a quasi-ideal of R if $R Q \cap Q R \subseteq Q$. The notion of quasi-ideals for rings was introduced by Steinfeld in [5]. Quasiideals generalize left ideals and right ideals. For a nonempty subset X of a ring R, let $(X)_{q}$ be the quasi-ideal of R generated by X which is the intersection of all quasi-ideals of R containing X [6, p. 11]. In [7], Weinert has given the next proposition.

Proposition 1.1 [7]. For a nonempty subset X of a ring R,

$$
(X)_{q}=\mathbb{Z} X+(R X \cap X R) .
$$

It is well-known that the intersection of a left ideal and a right ideal of R is a quasi-ideal of R but a quasi-ideal of R need not be obtained in this way. We can see some examples in $[6, \mathrm{p} .8]$ and $[1,3,4,8]$. We say that a quasiideal Q of R has the intersection property if Q is the intersection of a left ideal and a right ideal of R. Then every left ideal and every right ideal of R has the intersection property. If every quasi-ideal of R has the intersection property, then R is said to have the intersection property of quasi-ideals. Commutative rings, rings having a one-sided identity and regular rings are the examples of rings having the intersection property of quasi-ideals ([6], p. 9 and p. 73, respectively). In [8], Zhang et al. have characterized the following two known results:

Proposition 1.2 [8]. Let X be a nonempty subset of a ring R. Then the following statements are equivalent:
(i) $(X)_{q}$ has the intersection property.
(ii) $(\mathbb{Z} X+R X) \cap(\mathbb{Z} X+X R)=(X)_{q}$.
(iii) $R X \cap(\mathbb{Z} X+X R) \subseteq(X)_{q}$.
(iv) $X R \cap(\mathbb{Z} X+R X) \subseteq(X)_{q}$.

Proposition 1.3 [8]. A ring R has the intersection property of quasiideals if and only if for any finite nonempty subset X of R,

$$
R X \cap(\mathbb{Z} X+X R) \subseteq \mathbb{Z} X+(R X \cap X R)
$$

Let $S U_{n}(R)$ be the ring of all strictly upper triangular $n \times n$ matrices over a ring R. In [3], Kemprasit and Juntarakhajorn have characterized when $S U_{n}(F)$, where F is a field has the intersection property of quasi-ideals as follows:

Proposition 1.4 [3]. Let F be a field. Then the ring $S U_{n}(F)$ has the intersection property of quasi-ideals if and only if $n \leq 3$.

The purpose of this paper is to give the necessary and sufficient conditions for n that the ring $S U_{n}(R)$ has the intersection property of quasiideals where R is a Euclidean domain.

2. Main Result

Let R be a Euclidean domain. Then R is a PID and also a GCD domain.
Lemma 2.1. Let R be a Euclidean domain and $a, b, c \in R \backslash\{0\}$. Then the following statements hold:
(i) $a R+b R=\operatorname{gcd}(a, b) R$.
(ii) $a R \bigcap b R=\operatorname{lcm}(a, b) R$.
(iii) $\operatorname{gcd}(a, \operatorname{lcm}(b, c)) \mid \operatorname{lcm}(\operatorname{gcd}(a, b), c)$.
(iv) $(a R+b R) \cap c R \subseteq a R+(b R \cap c R)$.

Proof. (i) and (ii) are clear.
(iii) Since R is a GCD domain, we have that $a b=\operatorname{gcd}(a, b) \operatorname{lcm}(a, b)$. We can show that $\operatorname{gcd}(a, \operatorname{lcm}(b, c)) \mid \operatorname{lcm}(\operatorname{gcd}(a, b), c)$.
(iv) By (i) and (ii), we have that

$$
(a R+b R) \cap c R=\operatorname{gcd}(a, b) R \cap c R=\operatorname{lcm}(\operatorname{gcd}(a, b), c) R
$$

and

$$
a R+(b R \cap c R)=a R+\operatorname{lcm}(b, c) R=\operatorname{gcd}(a, \operatorname{lcm}(b, c)) R
$$

By (iii), we have $\operatorname{gcd}(a, \operatorname{lcm}(b, c)) \mid \operatorname{lcm}(\operatorname{gcd}(a, b), c)$, this implies that $\operatorname{lcm}(\operatorname{gcd}(a, b), c) R \subseteq \operatorname{gcd}(a, \operatorname{lcm}(b, c)) R$. Hence, $(a R+b R) \cap c R \subseteq a R+$ ($b R \cap c R$), as required.

Lemma 2.2. Let R be a Euclidean domain such that every additive subgroup is an ideal of R. The ring $S U_{3}(R)$ has the intersection property of quasi-ideals.

Proof. Let X be a finite nonempty subset of $S U_{3}(R)$. Then

$$
X S U_{3}(R) \subseteq\left\{\left.\left[\begin{array}{lll}
0 & 0 & x \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \right\rvert\, x \in R\right\}
$$

and

$$
S U_{3}(R) X \subseteq\left\{\left.\left[\begin{array}{lll}
0 & 0 & x \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \right\rvert\, x \in R\right\} .
$$

To show $S U_{3}(R) X \cap\left(\mathbb{Z} X+X S U_{3}(R)\right) \subseteq \mathbb{Z} X+\left(S U_{3}(R) X \cap X S U_{3}(R)\right)$, let $\quad M \in S U_{3}(R) X \cap\left(\mathbb{Z} X+X S U_{3}(R)\right)$. So $M \in S U_{3}(R) X$ and $M=$
$Q+N$, where $Q \in \mathbb{Z} X$ and $N \in X S U_{3}(R)$. Therefore, $Q=M-N \in$ $\left\{\left.\left[\begin{array}{lll}0 & 0 & x \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \right\rvert\, x \in R\right\} \cap \mathbb{Z} X$.

Define $\varphi:\left(\left\{\left.\left[\begin{array}{lll}0 & 0 & x \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \right\rvert\, x \in R\right\},+\right) \rightarrow(R,+)$ by

$$
\varphi\left(\left[\begin{array}{lll}
0 & 0 & x \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right)=x \text { for all } x \in R
$$

Then φ is a group isomorphism. Since φ is isomorphism and $X S U_{3}(R), \quad S U_{3}(R) X$ and $\left\{\left.\left[\begin{array}{lll}0 & 0 & x \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \right\rvert\, x \in R\right\} \cap \mathbb{Z} X$ are subgroups of $\left\{\left.\left[\begin{array}{lll}0 & 0 & x \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \right\rvert\, x \in R\right\}$, we have that $\varphi\left(X S U_{3}(R)\right), \quad \varphi\left(S U_{3}(R) X\right)$ and $\varphi\left(\left\{\left.\left[\begin{array}{lll}0 & 0 & x \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \right\rvert\, x \in R\right\} \cap \mathbb{Z} X\right)$ are subgroups of R. Therefore, by assumption, there exist $a, b, c \in R$ such that

$$
\varphi\left(X S U_{3}(R)\right)=a R, \quad \varphi\left(S U_{3}(R) X\right)=b R
$$

and

$$
\varphi\left(\left\{\left.\left[\begin{array}{lll}
0 & 0 & x \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \right\rvert\, x \in \mathbb{Z}\right\} \cap \mathbb{Z} X\right)=c R .
$$

Since $M=Q+N$,

$$
\varphi(M)=\varphi(Q)+\varphi(N) \in b R \cap(a R+c R) \subseteq c R+(a R \cap b R)
$$

by Lemma 2.1(iv). Therefore, $\varphi(M)=y+z$ for some $y \in b R$ and $z \in$ $a R \cap c R$. Since φ is isomorphism, there exist $A \in\left\{\left.\left[\begin{array}{lll}0 & 0 & x \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \right\rvert\, x \in \mathbb{Z}\right\}$
$\cap \mathbb{Z X}$ and $B \in X S U_{3}(R) \cap S U_{3}(R) X$ such that $y=\varphi(A)$ and $z=\varphi(B)$. Since φ is one-to-one, this implies that $M=A+B \in \mathbb{Z} X+X S U_{3}(R)$ $\cap S U_{3}(R) X$. Therefore, $S U_{3}(R) X \cap\left(\mathbb{Z} X+X S U_{3}(R)\right) \subseteq \mathbb{Z} X+\left(S U_{3}(R) X \cap\right.$ $\left.X S U_{3}(R)\right)$. By Proposition 1.3, $S U_{n}(R)$ has the intersection property of quasi-ideals.

Lemma 2.3. Let R be an integral domain. If $n \geq 4$, then the ring $S U_{n}(R)$ does not have the intersection property of quasi-ideals.

Proof. Let 1 be an identity of R and $A, B \in S U_{n}(R)$ be defined by

$$
A=\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & 0 & 0 \\
0 & \cdots & 0 & 0 & 0 & 0 \\
0 & \cdots & 0 & 0 & 0 & 1 \\
0 & \cdots & 0 & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & 0 & 0 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{cccccc}
0 & \cdots & 0 & 0 & 1 & 0 \\
0 & \cdots & 0 & 0 & 0 & 1 \\
0 & \cdots & 0 & 0 & 0 & 0 \\
0 & \cdots & 0 & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Thus,

$$
S U_{n}(R)\{A, B\}=\left\{\left.\left[\begin{array}{cccccc}
0 & \cdots & 0 & 0 & 0 & x \\
0 & \cdots & 0 & 0 & 0 & y \\
0 & \cdots & 0 & 0 & 0 & 0 \\
0 & \cdots & 0 & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & 0 & 0 & 0
\end{array}\right] \right\rvert\, x, y \in R\right\},
$$

$$
\{A, B\} S U_{n}(R)=\left\{\left.\left[\begin{array}{cccccc}
0 & \cdots & 0 & 0 & x & y \\
0 & \cdots & 0 & 0 & 0 & 0 \\
0 & \cdots & 0 & 0 & 0 & 0 \\
0 & \cdots & 0 & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & 0 & 0 & 0
\end{array}\right] \right\rvert\, x, y \in R\right\}
$$

and

$$
\mathbb{Z}\{A, B\}=\left\{\left.\left[\begin{array}{cccccc}
0 & \cdots & 0 & k & l & 0 \\
0 & \cdots & 0 & 0 & 0 & l \\
0 & \cdots & 0 & 0 & 0 & k \\
0 & \cdots & 0 & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & 0 & 0 & 0
\end{array}\right] \right\rvert\, k, l \in \mathbb{Z}\right\} .
$$

Then

$$
\begin{align*}
& \mathbb{Z}\{A, B\}+\left(S U_{n}(R)\{A, B\} \cap\{A, B\} S U_{n}(R)\right) \\
= & \left\{\left.\left[\begin{array}{cccccc}
0 & \cdots & 0 & k & l & x \\
0 & \cdots & 0 & 0 & 0 & l \\
0 & \cdots & 0 & 0 & 0 & k \\
0 & \cdots & 0 & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & 0 & 0 & 0
\end{array}\right] \right\rvert\, k, l \in \mathbb{Z}, x \in R\right\} . \tag{*}
\end{align*}
$$

Let $C, D \in S U_{n}(R)$ be defined by

$$
C=\left[\begin{array}{cccccc}
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & -1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & 0 & \cdots & 0
\end{array}\right] \text { and } D=\left[\begin{array}{cccccc}
0 & \cdots & 0 & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & 0 & 0 & 0 \\
0 & \cdots & 0 & 0 & 1 & 1 \\
0 & \cdots & 0 & 0 & 0 & 0 \\
0 & \cdots & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Then

$$
C A=-B+A D=\left[\begin{array}{cccccc}
0 & \cdots & 0 & 0 & 0 & 1 \\
0 & \cdots & 0 & 0 & 0 & -1 \\
0 & \cdots & 0 & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & 0 & 0 & 0 \\
0 & \cdots & 0 & 0 & 0 & 0
\end{array}\right] .
$$

By (*), we have

$$
C A=-B+A D \notin \mathbb{Z}\{A, B\}+\left(S U_{n}(R)\{A, B\} \cap\{A, B\} S U_{n}(R)\right)
$$

But $C A=-B+A D \in S U_{n}(R)\{A, B\} \cap\left(\mathbb{Z}\{A, B\}+\{A, B\} S U_{n}(R)\right)$, so

$$
\begin{aligned}
& S U_{n}(R)\{A, B\} \cap\left(\mathbb{Z}\{A, B\}+\{A, B\} S U_{n}(R)\right) \\
\nsubseteq & \mathbb{Z}\{A, B\}+\left(S U_{n}(R)\{A, B\} \cap\{A, B\} S U_{n}(R)\right)
\end{aligned}
$$

By Proposition 1.3, $S U_{n}(R)$ does not have the intersection property of quasi-ideals.

Now we are ready to prove our main result.
Theorem 2.4. Let R be a Euclidean domain such that every additive subgroup is an ideal of R. Then the ring $S U_{n}(R)$ has the intersection property of quasi-ideals if and only if $n \leq 3$.

Proof. If $n \leq 2$, then $S U_{n}(R)$ is a zero ring. It implies that $S U_{n}(R)$ has the intersection property of quasi-ideals.

If $n=3$, then by Lemma 2.2, we have that $S U_{3}(R)$ has the intersection property of quasi-ideals.

For the converse, assume that $n \geq 4$, by Lemma 2.3, the $S U_{n}(R)$ does not have the intersection property of quasi-ideals.

Hence, the theorem is completely proved.

Example 2.5. The ring \mathbb{Z} is the example of ring such that every additive subgroup is an ideal. By Theorem 2.4, we have that the ring $S U_{n}(\mathbb{Z})$ has the intersection property of quasi-ideals if and only if $n \leq 3$.

Remark 2.6. The authors in [2] show that every principal quasi-ideal of the ring $S U_{n}(R)$ has the intersection property. This implies that quasi-ideal in $S U_{n}(R)$ which does not have the intersection property must be generated by at least two elements. In the proof of Lemma 2.3, we see that there exist quasi-ideals in $S U_{n}(R)$ (case $n \geq 4$) which does not have the intersection property generated by two elements.

Acknowledgment

This paper was supported by Algebra and Applications Research Unit, Prince of Songkla University.

References

[1] R. Chinram and Y. Kemprasit, The intersection property of quasi-ideals in generalized rings of strictly upper triangular matrices, East-West J. Math. 3 (2001), 201-210.
[2] R. Chinram and C. Rungsaripipat, The intersection property of quasi-ideals in rings of strictly upper triangular matrices over $m \mathbb{Z}$, Adv. Algebra Anal. 1 (2006), 123-131.
[3] Y. Kemprasit and P. Juntarakhajorn, Quasi-ideals of rings of strictly upper triangular matrices over a field, Ital. J. Pure Appl. Math. 12 (2002), 97-104.
[4] Y. Kemprasit and R. Chinram, Generalized rings of linear transformations having the intersection property of quasi-ideals, Vietnam J. Math. 30 (2002), 283-288.
[5] O. Steinfeld, On ideal-quotients and prime ideals, Acta Math. Acad. Sci. Hung. 4 (1953), 289-298.
[6] O. Steinfeld, Quasi-ideals in Rings and Semigroups, Akadémiai Kiadó, Budapest, 1978.
[7] H. J. Weinert, On quasi-ideals in rings, Acta Math. Hungar. 43 (1984), 85-99.
[8] M. C. Zhang, Y. Q. Chen and Y. H. Li, The intersection property of quasi-ideals in rings and semigroup rings, SEA Bull. Math. 20 (1996), 117-122.

[^0]: Received: April 1, 2016; Accepted: May 31, 2016
 2010 Mathematics Subject Classification: 16S50.
 Keywords and phrases: ring of strictly upper triangular matrices, intersection property of quasi-ideals, Euclidean domain.

 Communicated by K. K. Azad

