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Abstract 

In this paper, we study the relation between ω-limit sets and minimal 
sets. It is known that every minimal set is an ω-limit set. However, not 
every ω-limit set is a minimal set, although it contains a minimal set. 
We would like to know under what condition, an ω-limit set turns out 
to be a minimal set. We prove a necessary and sufficient condition 
under which every ω-limit set is minimal. We also establish a 
sufficient condition for an ω-limit set to be minimal. 

1. Introduction 

Throughout this paper, I denotes a compact interval and ( )IIC ,  denotes 
the collection of all continuous functions f which map I to itself. For 
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( ),, IICf ∈  the nth iterate of f, denoted by ,nf  is defined inductively by 

setting ( ) xxf =0  and ( ) ( ( ))xffxf nn 1−=  for .1≥n  For ,Ix ∈  ( )fx,ω  

denotes the set of all limit points of the sequence { ( )} 0≥n
n xf  and ( ) =Λ f  

( )∪ Ix fx∈ ω .,  Let ( )fR  denote the set of all recurrent points of f and 

( )fAP  denote the set of all almost periodic points of f. 

The main aim of this paper is to study the relationship between ω-limit 
sets and minimal sets. It is well-known that every minimal set is an ω-limit 
set. However, not every ω-limit set is a minimal set, although it contains         
a minimal set. We prove that ( ) ( )ffR Λ=  is a necessary and sufficient 

condition under which every ω-limit set is minimal. 

Another important result in this paper is a sufficient condition for an       
ω-limit set to be a minimal set. A special case of this result is that if an        
ω-limit set consists of only periodic points, then it is a periodic orbit (a finite 
minimal set). 

2. Preliminaries and Known Results 

Recall that ( )IICf ,∈  is a continuous function of the compact interval 

I into itself and nf  is the nth iterate of f. In this section, we state the 

definitions and notation and list some important theorems which will be used 
later either explicitly or implicitly. Further, although we restrict our attention 
to functions of a compact interval, many of the ideas are applicable to 
mappings of a compact metric space and some of the results are also valid for 
mappings of a compact metric space. 

Definition 2.1. For a given point ,Ix ∈  the trajectory or orbit of f at         

x, denoted by ( ),, fxO  is the sequence { ( )} .0≥n
n xf  Sometimes we view 

( )fxO ,  as a sequence and sometimes as a set. However, the context will 

always indicate which is meant. 
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In the case where ( )fxO ,  has a finite range, x is called an eventually 

periodic point of f. The set of all eventually periodic points is denoted by 
( ).fEP  

Definition 2.2. A point Ix ∈  is called a fixed point of f if ( ) .xxf =  

The set of all fixed points of f is denoted by ( ).fF  If m is a positive integer, 

a point Ix ∈  is called a periodic point of f of period m, if ( ) xxf m =  and 

( ) xxf i ≠  for .11 −≤≤ mi  The set of all periodic points of f is denoted by 

( ).fP  

Definition 2.3. A point Ix ∈  is called an almost periodic point of f if 
for every open set U containing x, there exists a positive integer N such that 

if ( ) Uxf m ∈  and ,0≥m  then ( ) Uxf km ∈+  for some k, .0 Nk ≤≤  The 

set of all the almost periodic points of f is denoted by ( ).fAP  

Definition 2.4. A point Ix ∈  is called a recurrent point of f if for   
every open set U containing x, there exists a positive integer n such that 

( ) .Uxf n ∈  The set of all recurrent points of f is denoted by ( ).fR  

Definition 2.5. For a given point ,Ix ∈  the ω-limit set of x, denoted by 

( ),, fxω  is the set of all points y for which there exists a sequence { ( )}xf kn  

such that as ,∞→k  ∞→kn  and ( ) .yxf kn →  A point ( )fxy ,ω∈  is 

called an ω-limit point. The set of all ω-limit points is denoted by ( ),fΛ  

( ) ( )∪ Ix fxf ∈ ω=Λ .,  

Definition 2.6. A subset M of I is said to be a minimal set with respect  
to f if it is nonempty, closed and invariant and if no proper subset has these 
three properties. 

Definition 2.7. f is said to be turbulent if there exist closed subintervals  
J and K such that KJ ∩  contains at most one point, and ( )JfKJ ⊆∪  

( ).Kf∩  If ,∅=KJ ∩  then f is said to be strictly turbulent. 
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Definition 2.8. f is said to be chaotic if nf  is turbulent for some positive 

integer n. If f is not chaotic, then f is said to be non-chaotic. 

Definition 2.9. The symbol space is the metric space ( ),,2 dΣ  where 

{ } ,1,02
N=Σ  N is the set of non-negative integers and 

( ) ∑
∞

=

−
=

0 2
,

i
i

ii tstsd  

for ( ) ( ) ., 2210210 Σ∈== "" ttttssss  

The one-sided shift map 22: ΣΣσ 6  is defined by ( ) =σ "210 sss  

( ).21 "ss  

Note that σ is continuous. Now we are in the position to list some known 
results to be used later. They can be found in [3] unless other references are 
specified. 

Theorem 2.1. The following statements are equivalent: 

(1) f is chaotic, 

(2) f has a periodic point of period which is not a power of 2, 

(3) there exists Ix ∈  such that ( )fx,ω  properly contains a periodic 

orbit, 

(4) there exists Ix ∈  such that ( )fx,ω  is countably infinite, 

(5) ( ) ( ),fRfAP ≠  

(6) there exists a compact set Ix ⊆  such that ( ) XXf m =  for some 

positive integer m and a continuous map h of X onto 2Σ  such that each point 

of 2Σ  is the image of at most two points of X and 

( ) ( )xhxfh m DD σ=  

for all .Xx ∈  
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Theorem 2.2. If f is chaotic, then there exists Ix ∈  such that ( )fx,ω  

contains infinitely many minimal sets. 

3. Relations between ω-limit Sets and Minimal Sets 

In this section, we establish a necessary and sufficient condition that       
ω-limit set be minimal for every .Ix ∈  Then we give some sufficient 
conditions for an ω-limit set to be minimal. We start with the following 
simple theorem which can be found in [4]. 

Theorem 3.1. ( )fx,ω  is a finite minimal set for every Ix ∈  if and only 

if ( ) ( ).ffP Λ=  

Proof. Assume ( )fx,ω  is a finite minimal set for every .Ix ∈  Then it 

is easy to see that ( )fx,ω  is a periodic orbit. So ( ) ( )fPfx ⊆ω ,  for each 

.Ix ∈  Thus, we have 

( ) ( ) ( ) ( )∪
Ix

ffPfxf
∈

Λ⊆⊆ω=Λ .,  

So ( ) ( ).ffP Λ=  

Conversely, if ( ) ( ),ffP Λ=  due to the fact, ( ) ( ) ( )fRfAPfP ⊆⊆  

( ),fΛ⊆  we have ( ) ( ) ( )fPfRfAP ==  which implies that f is non-chaotic 

by Theorem 2.1. 

Now let .Ix ∈  Then ( ) ( ),, fPfx ⊆ω  since ( ) ( ).fPf =Λ  So ( )fx,ω  

contains a periodic orbit M. By Theorem 2.1, it cannot contain M properly. 
Therefore, ( ) Mfx =ω ,  which is a finite minimal set.  

In order to prove a necessary and sufficient condition that every ω-limit 
set is minimal for a given f, we need the following lemma: 

Lemma 3.2. If ( )fR  is closed, then f is non-chaotic. 

Proof. Suppose to the contrary that f is chaotic. Then, by Theorem 2.1(6), 

there exists a compact subset X of I such that ( ) XXf m =  for some positive 
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integer m and there is a continuous map h of X onto 2Σ  such that each point 

of 2Σ  is the image of at most two points of X and 

  ( ) ( )xhxfh m DD σ=  (3.1) 

for all .Xx ∈  Since ( ) ( )fRfR m =  is closed, ( )mfRX ∩  is closed. 

Claim. ( ) ( ( )).mfRXhR ∩=σ  

Proof of Claim. If ( ),mfRXx ∩∈  then there exists a sequence 

{ ( )}xf mnk  such that as ,∞→k  ∞→kn  and ( ) .xxf mkn →  It follows 

from (3.1) that ( )( ) ( ( ))xfhxh mnn kk =σ  which converges to ( ).xh  This 

shows that ( ) ( ).σ∈ Rxh  On the other hand, if ( )σ∈ Ry  and y has a            

unique x such that ( ) ,yxh =  then ( ) yykn →σ  for some .∞→kn  Again,               

it follows from (3.1) that ( ( )) ( ).yxfh kk nmn σ=  Without loss of generality, 

assume ( ) .1xxf mnk →  Then ( ) yxh =1  implies that .1 xx =  So ∩Xx ∈  

( ).mfR  Now suppose that there are two points Xxx ∈21,  with ( )1xh  

( ) .2 yxh ==  Then we have ( ( )) ( )yxfh kk nmn σ=1  and ( ( )) =2xfh mnk  

( ).yknσ  Again, without loss of generality, assume ( )1xf mnk  and ( )2xf mnk  

are two convergent sequences which converge to either 1x  or .2x  Assume 

( ).1
mfRx ∉  Then ( ) 21 xxf mnk →  and ( ).,12

mfxx ω∈  Hence, ( )2xf mnk  

2x→  since otherwise if ( ) ,12 xxf mnk →  then ( ) ( )mm fxfxx ,, 121 ω⊆ω∈  

would imply ( ).1
mfRx ∈  So ( ).2

mfRx ∈  This shows that ( ) =σR  

( ( )).mfRXh ∩  It follows from Claim that ( )σR  is closed. Thus, ( ) =σR  

( ).σR  But, in ,2Σ  we know ( ) ( ) .2Σ=σ=σ PR  So ( ) .2Σ=σR  This is a 

contradiction, because obviously, ( ) ( )....,0,0,0,1 σ∉ R  This proves that f is 

non-chaotic.  
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Now we are ready to prove the following theorem: 

Theorem 3.3. ( )fx,ω  is minimal for each Ix ∈  if and only if ( ) =fR  

( ).fΛ  

Proof. Assume that ( )fx,ω  is minimal for each .Ix ∈  Then, for every 

( ),, fxy ω∈  ( ) ( )fxfyO ,, ω=  which implies that ( ).fAPy ∈  So 

( ) ( )fAPfx ⊆ω ,  

and 

( ) ( ) ( ) ( )∪
Ix

fRfAPfxf
∈

⊆⊆ω=Λ .,  

It is trivial that ( ) ( ).ffR Λ⊆  Therefore, 

( ) ( ).ffR Λ=  

Conversely, if ( ) ( ),ffR Λ=  then ( )fR  is a closed set which implies 

that f is non-chaotic by Lemma 3.2. Let .Ix ∈  If ( )fx,ω  is finite, then 

( )fx,ω  is a periodic orbit and therefore a minimal set. Assume ( )fx,ω  is 

infinite. It also follows from the assumption ( ) ( )fRf =Λ  that ( ) =Λ f  

( ).fAP  Hence, ( )fy,ω  is minimal for all ( )., fxy ω∈  Since f is          

non-chaotic, ( )fy,ω  contains a unique minimal set. Thus, ( ) =ω fx,  

( )( ) ( )fyfyfxy ,,, ω=ωω∈∪  for any ( )., fxy ω∈  This shows that ( )fx,ω  

is minimal.  

Now we give some sufficient conditions for an ω-limit set to be minimal. 
First, we need the following lemma: 

Lemma 3.4. Let .Ix ∈  If ( ) ( ),, fAPfx ⊆ω  then ( )fx,ω  is either a 

finite set or a Cantor set. 

Proof. Suppose that ( )fx,ω  is infinite. First, we show all points of 

( )fx,ω  are limit points of ( )., fxω  Let ( )., fxy ω∈  If y is periodic, then 



Liying Wang, Likun Kang and Long Wang 84 

it is a limit point of ( )., fxω  If y is not a periodic point, since ( ),fAPy ∈  

( )fy,ω  is an infinite minimal set which is a subset of ( )., fxω  Since 

( )fyy ,ω∈  is a limit point of ( ),, fyω  it is also a limit point of ( )., fxω  

It remains to show that ( )fx,ω  is nowhere dense. Suppose to the 

contrary that it contains an interval ( )., ba  Then ( ) ( )baxf N ,∈  for some 

positive integer N. Since ( ) ( ),, fAPfx ⊆ω  ( ) ( )fAPxf N ∈  and therefore 

( ( ) )fxf N ,ω  is a minimal set. Thus, ( ) ( ( ) )fxffx N ,, ω=ω  is a minimal 

set. This contradicts that a minimal set is a Cantor set. So ( )fx,ω  is either a 

finite set or a Cantor set.  

Theorem 3.5. Let .Ix ∈  If ( ) ( ),, fPfx ⊆ω  then ( )fx,ω  is finite and 

a periodic orbit. 

Proof. For simplicity, assume [ ].1,0=I  Suppose that ( )fx,ω  is infinite. 

By Lemma 3.4, it is a Cantor set. Now there are two possibilities: 

 (i) The periods of points in ( )fx,ω  are bounded. 

(ii) The periods of points in ( )fx,ω  are unbounded. 

Let us assume case (i) first. Let K be the least upper bound of the periods 
and !.KN =  Then we have 

( ) ( ( ) )∪
1

0

,,
−

=

ω=ω
N

j

Nj fxffx  

and 

( ( ( ) )) ( ( ) ).,, 1 NjNj fxffxff +ω=ω  

Therefore, each ( ( ) )Nj fxf ,ω  is infinite and therefore a Cantor set for 

.11 −≤≤ Nj  Choose an interval ( )ba,  such that ( ) ( ) ,,, ∅=ω Nfxba ∩  

( ) [ ) ∅≠ω afx N ,0, ∩  and ( ) [ ) ∅≠ω 1,, bfx N ∩  and choose a point c     
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in ( )., ba  Let ( ) [ ],,0, cfxA N ∩ω=  ( ) [ ].1,, cfxB N ∩ω=  Then clearly 

A and B are closed, disjoint and ( ) ., BAfx N ∪=ω  Moreover, ( ) AAf N =  

and ( ) .BBf N =  This is impossible. 

Now assume the second case. Let { ( ) }yyfyP n
n == ,  and =nX  

( ) ., nPfx ∩ω  Then ( ) ∪ 1, ≥=ω n nXfx  and each nX  is closed. So, by the 

Baire Category Theorem, there exist a, b such that ( ) ( ) nXbafx =ω ,, ∩  

( )ba,∩  which is not empty for some n. Since 

( ) ( ( ) )∪
1

0

,,,
−

=

ω=ω
n

j

nj fxffx  

( ( ) ) ( )∩ ∅≠ω bafxf nj ,,  

for some j. Since 

( ( ) ) ( ) ( ) ( ) ( )∩∩∩ ,,,,,, baXbafxbafxf n
nj =ω⊆ω  

we have 

( ( ) ) ( ) ( )∩ .,, nnj fFbafxf ⊆ω  

Similarly, since ( )fx,ω  is a Cantor set, ( ( ) )nj fxf ,ω  is a Cantor set. 

Hence, we can find disjoint open intervals ( )11, dc  and ( )22, dc  in ( )ba,  

such that 

( ( ) ) ( )∩ ,,, 11 ∅=ω dcfxf nj  

( ( ) ) ( )∩ ,,, 22 ∅=ω dcfxf nj  

( ( ) ) ( )∩ ,,, 21 ∅≠ω cdfxf nj  

( ( ) ) ( )∩ .,, 1 ∅≠ω cafxf nj  

Choose c in ( )11, dc  and d in ( )., 22 dc  Then ( ( ) ).,, nj fxfdc ω∉  
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Let ( ( ) ) [ ],,, dcfxfA nj ∩ω=  ( ( ) ) [ ] [ ]( ).1,,0, dcfxfB nj ∪∩ω=  

Then it follows from the choices of c and d that A, B are closed, disjoint and 

( ( ) ) ., BAfxf nj ∪=ω  Moreover, we claim that 

( ) ( ) ., BBfAAf nn ⊆⊆  

In fact, if ,Ay ∈  then nXy ∈  and ( ) yyf n =  which gives ( ) .AAf n =  Let 

.By ∈  Assume that ( ) .Ayf n ∈  Then ( ) ( )yfyf nn =2  and ( ) ( )yfyf nin =  

for all 1≥i  which implies that ( ) yyf in ≠  for all .1≥i  But since ( )fPy∈  

( ),nfP=  this is a contradiction. So ( ) .BBf n ⊆  

Now we have that ( ( ) ) ,, BAfxf nj ∪=ω  where A, B are closed, disjoint 

and forward invariant under .nf  This is also impossible. 

So ( )fx,ω  is a finite set and therefore it is a periodic orbit.  

To prove the next result in this section, we need to establish the 
following lemma: 

Lemma 3.6. Let .Ix ∈  If ( )fx,ω  properly contains an infinite minimal 

set M and ( )( ) ( ) ,\,\, MfxMfxf ω⊆ω  then ( ) .\, MfxM ω⊆  

Proof. It is clear that there exists My ∈  such that ( ) .\, Mfxy ω∈    

We proceed by contradiction. Suppose that there exists Mz ∈  such that 

( ) .\, Mfxz ω∉  Then we can find an open neighborhood U of z for which 

 ( )( )∩ .\, ∅=ω MfxU  (3.2) 

Since M is minimal, there exists a positive integer N such that 

( ) .Uyf N ∈  ( ) Mfxy \,ω∈  implies that there exists a sequence { } ⊆ky  

( ) Mfx \,ω  such that .yyk →  Thus, ( ) ( ).yfyf N
k

N →  So ( ) Uyf k
N ∈  

for sufficiently large k. Since ( ) Mfxyk \,ω∈  which is invariant under f, 
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( ) ( ) .\, Mfxyf k
N ω∈  It follows that 

( )∩ ∅≠ω MfxU \,  

which contradicts (3.2). Hence, ( ) .\, MfxM ω⊆   

Theorem 3.7. Let .Ix ∈  If ( ) ( )fAPfx ⊆ω ,  and there exists an 

interval ( )ba,  such that ( ) ( ) ∅≠ω bafx ,, ∩  and ( ) ( ) ⊆ω bafx ,, ∩  

( ) ( )bafy ,, ∩ω  for some ( ),, fxy ω∈  then ( )fx,ω  is a minimal set. 

Proof. The proof is a consequence of Lemma 3.6. Since under the 
hypothesis, if ( ) ( ) ,,\, ∅≠ωω fyfx  then some points of ( )fy,ω  inside 

( )ba,  would be isolated from ( ) ( ).,\, fyfx ωω  So ( ) ( )fyfx ,, ω=ω  

which is minimal.  
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