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Abstract 

Approximations are very important because it is sometimes not 
possible to precisely represent exact representation, while in some 
cases the exact answer is already obtained but is very difficult to 
apply, as well the approximations sometimes simplify the analytical 
treatments. Compared with other asymptotic approximations, saddle 
point approximations have the advantage of always generating 
probabilities, being very accurate in the tails of the distribution, and 
being accurate with small samples, sometimes even with only one 
observation. In this paper, saddle point approximation methods have 
been proven to be useful for a range of problems, such as the random 
sum statistics (Poisson-Bernoulli) model which is very complex 
model. 
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1. Introduction 

The random sum distribution plays a key role in both probability theory 
and its applications in biology, seismology, risk theory, meteorology and 
health science. The statistical significance of this distribution arises from its 
applicability to real-life situations, in which the researcher often observes 
only the total amount, say ,NS  which is composed of an unknown random 

number N of random contributions, say X’s. In health science, the random 
sum plays a very important role in many real-life applications. For example, 
let the number of hotbeds of a contagious disease follow a Poisson 
distribution with a mean of λ, and let the number of sick people within the 
hotbed follow a Binomial distribution. If the goal is to find the probability 
that the total number of sick people is greater than 70, then the total number 
of sick people within the hotbed is: 

∑ =
=

N
i iN XS

1
,1  (1) 

where ( )pnXi ,Binomial~  and ( ).Poisson~ λN  

Another practical application of the random sum is the number of times 
that it rains in a given time period, say N, which has a Poisson distribution 
with mean λ. If the amount of rain that falls has Bernoulli distribution and if 
the rain falling in that time period is independent of N, then the total rainfall 
in the time period is: 

∑ =
=

N
i iN YS

1
,2  (2) 

where ( )pYi Bernoulli~  and ( ).Poisson~ λN  

In fact, the total amounts of the random sums 1NS  and 2NS  are 

composed of an unknown random number N of other random contributions, 
say X or Y which are very complex to analyze. In most cases, the distribution 
of the random sum is still unknown; in other cases, it is already known but is 
too complex for the computation of the distribution function, which often 
becomes too slow for many problems [1]. The saddle point approximation 
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method can help us gain knowledge for these unknown difficult statistical 
behaviours. 

2. Derivation of the Saddle Point CDFs for the  
Random Sum Poisson-Bernoulli Model 

To develop new estimators CDFs using saddle point approximations for 
this model. Let we have the random sum ,21 NN XXXS +++=  where 

iX ’s are independent of N, and ( ),Poisson~ λN  X’s ( ).Bernoulli~ p  

The MGF for Poisson distribution is given by 

( ) ( ).1−λ=
se

N esM  (3) 

As well the MGF for Bernoulli distribution is given by 

( ) ( ).qpesM s
X +=  (4) 

The cumulant generating function for N is given by 

( ) ( )( ),ln sMsK NN =  

( ) ( )1ln −λ=
se

N esK  

( ).1−λ= se  (5) 

The cumulant generating function for X is given by 

( ) ( )( ),ln sMsK XX =  (6) 

( ) ( ),ln qpesK s
X +=  (7) 

where ,1=+ pq  then we can get the cumulant generating function for the 

Poisson-Bernoulli random sum distribution as follows: 

( ) ( )( ),sKKsK XNSN =  

( ) ( ( ) )1ln −λ= +qpe
S

s

N esK  

( )1−+λ= qpes  (8) 
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the saddle point is given as 

( ) ,ˆ xpesK s
SN =λ=′  (9) 

,ˆ
p
xes
λ

=  

p
xs
λ

= lnˆ  

and 

( ) .ŝ
S pesK N λ=′′  

This leads to the saddle point mass function for Poisson-Bernoulli which 
is given by 

( )
( )

.
2

1ˆ ln1

ˆ

ˆ
⎭⎬
⎫

⎩⎨
⎧

λ
−−+λ

πλ
= p

xxqpe

s

s

e
pe

xf  (10) 

The first continuity-correction is 

( ) ( ) ,1ln2ˆsgnˆ ˆ
1 ⎭⎬

⎫
⎩⎨
⎧ −+λ−⎟

⎠
⎞⎜

⎝
⎛

λ
= qpep

xxsw s  (11) 

{ } .1ˆ ˆln
1

sp
x

peeu λ−=
⎟
⎠
⎞⎜

⎝
⎛

λ
−

 

The second continuity-correction is 

( ) ( ) ,1ln2~sgn~ ~
2 ⎭⎬

⎫
⎩⎨
⎧ −+λ−⎟

⎠
⎞⎜

⎝
⎛

λ
= − qpexp

xsw s  (12) 

where ,5.0−=− xx  then 

.2

ln
Sinh2~ ~

2
sPep

x

u λ
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ ⎟
⎠
⎞⎜

⎝
⎛

λ=  (13) 
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And the third continuity-correction is 

,~~ ~
3

spesu λ=  

this approximation uses the same second continuity-correction while 3
~u  

changed. 

3. Saddle Point Approximation with Application to the  
Poisson Random Sum Distribution 

The Poisson random sum distribution is the sum of a random sample 
from a certain distribution (continuous or discrete) with a sample size that is 
independent of the Poisson random variable. This sum has wide-ranging 
applications in fields such as insurance (e.g., the total claim size in a 
portfolio), meteorology, mall visit frequencies, and mortality data. 

4. Saddle Point Approximation with Application to the  
Random Sum Poisson (λ)-Bernoulli (p) Model 

This section provides numerical results that can be used to compare the 
accuracies of the various saddle point approximations in discrete cases, and 
considered a saddle point approximation [2] and [3] for the distribution of 
this random sum statistic. As an example, suppose that N is Poisson (2), and 
let X be the Bernoulli random variable, with .3.0=p  Then, the ( )tNS  is a 

random sum Poisson process with the following form: 

( )

( )

∑
=

>=
tN

j
jtN tXS

1
.0,  (14) 

As previously indicated, random sum Poisson processes are very 
complicated and difficult to analyze, and therefore, approximation methods 
are often used. The previous section identified the moment-generating 
function, which leads to the explicit cumulant generating function. Now let 

3.0,2,1 ==λ= px  so, we get the saddle point 
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⎟
⎠
⎞⎜

⎝
⎛
λ

= p
xs lnˆ  

( ) ⎟⎠
⎞⎜

⎝
⎛= 3.02

1ln  

5108.0=  (15) 

and 

( ) ( )1ˆ ˆ −+λ= qpesK s  

( )17.03.02 5108.0 −+= e  

.3999.0=  (16) 

Also 

( ) spesK ˆˆ λ=′′  

( ) 5108.03.02 e=  

9999.0=  

first continuity-correction 

( ) { ( )}skxssw ˆˆ2ˆsgnˆ1 −=  

( ){ }3999.015108.02 −+=  

4709.0=  (17) 

and 

{ } ( )skeu s ˆ1ˆ ˆ
1 ′′−= −  

{ ( )} ,9999.01 5108.0−−= e  (18) 

( ) ( ) ( ) .
ˆ
1

ˆ
1ˆˆ1ˆ

11
1 ⎟

⎠

⎞
⎜
⎝

⎛
−φ−Φ−=≥

uw
wwxXpr  
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We can find the ( )1ŵΦ  from the normal CDF table, 

( ) .6808.04709.0 =Φ  

And ( )1ŵΦ  by using the normal pdf distribution, 

( )
( )24709.02

1

2
14709.0

−

π
=φ e  

3570.0=  

Where the first approximation is 

( ) ⎟
⎠
⎞⎜

⎝
⎛ −−−=≥ 3999.0

1
4709.0
13570.06808.01ˆ 1 xXpr  

4538.0=  (19) 

While the second is given by .5.05.015.0 =−=−=− xx  

Then 

( ) 5.05.0~ =−=′ xsk  

,5.0
~
=λ⇒ spe  

⎟
⎠
⎞⎜

⎝
⎛
λ

= ps 5.0ln~  

( ) ( ) ⎟⎠
⎞⎜

⎝
⎛= 3.02

5.0ln  

1823.0−=  

and 

( ) ( )1ˆ ˆ −+λ= qpesk s  

( )17.03.02 1823.0 −+= −e  

.0999.0−=  
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Also 

( ) spesk ˆˆ λ=′′  

( ) 1823.03.02 −= e  

.5000.0=  

Then 

( ) { ( )}skxssw ˆˆ2ˆsgnˆ2 −= −  

( ) ( ) ( ){ }0999.05.01823.02 −−−−=  

1322.0−=  (20) 

and 

( )sksu ~
2
~

sinh22 ′′⎟
⎠
⎞⎜

⎝
⎛=  

( ) ( )skee
ss

~
2
12 2

~
2
~

′′
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

−
 

( ( ) 5000.02
12 09115.009115.0 ⎟

⎠
⎞⎜

⎝
⎛ −= −−− ee  

,1290.0−=  

( ) ( ) ( ) .ˆ
1

ˆ
1ˆˆ1ˆ

22
222 ⎟

⎠
⎞⎜

⎝
⎛ −φ−Φ−=≥ uwwwxxpr  (21) 

We can find the ( )1ŵΦ  from the CDF table 

( ) 4483.01322.0 =−Φ  

and ( )1ŵφ  is given by 

( )
( )21322.02

1

2
11322.0

−−

π
=−φ e  

,3954.0=  
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( ) ⎟
⎠
⎞⎜

⎝
⎛

−
−

−
−−=≥ 1290.0

1
1322.0
13954.044.01ˆ 2 xXpr  

.4775.0=  (22) 

Third continuity-correction 

( )sksu ~~~
3 ′′=  

5000.01823.0−=  

,1289.0−=  

( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ −φ−Φ−=≥

32
223 ˆ

1
ˆ
1ˆˆ1ˆ

uwwwxXpr  

⎟
⎠
⎞⎜

⎝
⎛

−
−

−
−−= 1289.0

1
1322.0
13954.044.01  

.4751.0=  (23) 

Now we use normal approximation to investigate the performance of 
saddle point method for the first approximation 

( ) ( ) ,, λ== NEpXE  

( ) ( ) ( )XENEsE NS =  

λ= p  

( ) ( )23.0=  

,6.0=  

where ( )sV NS  is given by 

( ) ( ) ,, λ== NVpqxV  

( ) ( ) ( ) ( )( ) ( )NVarXEXVarNEsV NS
2+=  

( ) ( ) ( ) ( )( ) ( )23.07.03.02 2+=  

.6.0=  (24) 
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From the normal approximation, we get 

⎟
⎠
⎞⎜

⎝
⎛ −=⎟

⎠
⎞⎜

⎝
⎛

σ
μ−

6.0
6.01cdfxcdf  

( ),5163.0cdf=  

( ) 4483.01ˆ −=≥ xXpr  

.5517.0=  

Now we use normal approximation also to investigate the performance of 
saddle point method for the second approximation as 

( ) ( ) ,, λ== NEpXE  

( ) ( ) ( )XENEsE NS =  

λ= p  

( ) ( )23.0=  

,6.0=  

where ( )sV NS  is found as: 

( ) ( ) ,, λ== NVpqxV  

( ) ( ) ( ) ( )( ) ( )NVarXEXVarNESV 2+=  

( ) ( ) ( ) ( )( ) ( )23.07.03.02 2+=  

.6.0=  (25) 

Then 

( ) 5422.01
6.0

6.05.01ˆ −=⎟
⎠
⎞⎜

⎝
⎛ −−=≥ cdfxXpr  

.5478.0=  
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The MATLAB program is used to obtain various CDF approximations 
for any value in support of x. The exact probabilities are obtained using the 
empirical distribution with generating one million observations. 

Table 1 shows the continuity-corrected CDF approximations for the 
random sum Poisson (2)-Bernoulli (0.3) model with its corresponding exact 
and normal approximation for 10 different values of x. 

Table 1. Continuity-corrected CDF approximations for the random sum 
Poisson (2)-Bernoulli (0.3) model 

 Exact First-corrected Second-corrected Third-corrected 

x ( )xSP N ≥  ( )xSP N ≥1̂  ( )xSP N ≥′ ( )xSP N ≥2
ˆ ( )xSP N ≥′ ( )xSP N ≥3̂ ( )xSP N ≥′  

1 0.4533 0.4538 0.5517 0.4775 0.5478 0.4751 0.5478 

2 0.1222 0.1239 0.0354 0.1250 0.1226 0.13200 0.1226 

3 0.221 0.2330 0.0010 0.0238 0.0071 0.02655 0.0071 

4 0.0501 0.0616 0.0000 0.00350 0.0001 0.0040 0.0001 

5 0.0511 0.05004 0.0000 0.05009 0.0000 0.050900 0.0000 

6 510755.1 −∗  510855.1 −∗  0.0000 410715.6 −∗ 0.0000 410898.6 −∗ 0.0000 

7 610663.8 −∗  610798.8 −∗  0.0000 710657.2 −∗ 0.0000 610745.1 −∗ 0.0000 

8 710000.7 −∗  710027.7 −∗  0.0000 1310657.4 −∗ 0.0000 1410194.3 −∗ 0.0000 

9 810129.4 −∗  810952.4 −∗  0.0000 810532.1 −∗ 0.0000 910771.9 −∗ 0.0000 

10 910021.3 −∗  910122.3 −∗  0.0000 1010727.9 −∗ 0.0000 1010162.6 −∗ 0.0000 

To investigate the performance of this method we used different parameters 
for this model given in Table 2. 

Table 2. Continuity-corrected CDF approximations for the random sum 
Poisson (3)-Bernoulli (0.4) model 

 Exact First-corrected Second-corrected Third-corrected 

x ( )xSP N ≥  ( )xSP N ≥1̂  ( )xSP N ≥′ ( )xSP N ≥2
ˆ ( )xSP N ≥′ ( )xSP N ≥3̂ ( )xSP N ≥′  

1 0.6534 0.6515 0.5714 0.7076 0.7357 0.6352 0.7357 

2 0.5112 0.5000 0.2327 0.4209 0.1190 0.3436 0.1190 

3 0.1219 0.1218 0.0054 0.12251 0.0183 0.1269 0.0183 

4 0.02998 0.0343 0.0003 0.0194 0.0013 0.02468 0.0013 
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5 0.03110 0.03005 0.0000 310802.7 −∗ 0.0000 310499.8 −∗ 0.0000 

6 310888.5 −∗  310986.5 −∗  0.0000 310350.2 −∗ 0.0000 310722.1 −∗ 0.0000 

7 410999.8 −∗  410908.8 −∗  0.0000 410776.2 −∗ 0.0000 410123.3 −∗ 0.0000 

8 510266.1 −∗  510370.1 −∗  0.0000 510994.1 −∗ 0.0000 510400.1 −∗ 0.0000 

9 610023.2 −∗  610135.2 −∗  0.0000 410136.1 −∗ 0.0000 610443.3 −∗ 0.0000 

10 610322.2 −∗  610312.2 −∗  0.0000 5103941.1 −∗ 0.0000 610009.1 −∗ 0.0000 

5. The Performance in Discrete Distributions 

This section presents the performance of continuity-corrected CDF 
saddle point approximations in a discrete distribution for the Poisson (λ)-
Bernoulli (p) model. Tables 1 and 2 show the three saddle point 
approximations for the random sum Poisson-Bernoulli model, corresponding 
to the exact and the normal approximation. The numerical results indicate                    
in general that the saddle point approximation is accurate and seems to 

suggest that both ( )xSP N ≥1̂  and ( )xSP N ≥2̂  are consistently accurate 

with ( ).3̂ xSP N ≥  Throughout the study of this issue for example [4], no 

final decision could arrive as to which approximation 21 ˆ,ˆ PP  and 3̂P  are 

better. Ultimately, this choice depends upon the application. In certain cases, 

it is found that ( )xSP N ≥1̂  is better than ( );2̂ xSP N ≥  and, in others, it is 

found to be otherwise. Still, in most cases, ( )xSP N ≥3̂  is better than either 

of the former options. In [6], it is found, in general, that the second and third 
corrections are better than the first one. For this reason, this study suggests to 
calculate 21 ˆ,ˆ pp  and .ˆ3p  If all are functioning well and share the same 

accuracy (very close together), then their accuracy is supported. However, if 
they differ, a choice must be made depending on the particular application at 
hand [7]. Furthermore, among all the three continuity-corrected 
approximations, the saddle point approach is close to exact than the normal 
approximation. 
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6. Conclusion 

We have introduced a simple technique to find the CDF for the discrete 
random sum distribution using the saddle point distribution. In conclusion, 
this study confirmed the accuracy of the saddle point approximation for the 
random sum models. 
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