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Abstract

Approximations are very important because it is sometimes not
possible to precisely represent exact representation, while in some
cases the exact answer is aready obtained but is very difficult to
apply, as well the approximations sometimes simplify the analytical
treatments. Compared with other asymptotic approximations, saddle
point approximations have the advantage of aways generating
probabilities, being very accurate in the tails of the distribution, and
being accurate with small samples, sometimes even with only one
observation. In this paper, saddle point approximation methods have
been proven to be useful for a range of problems, such as the random
sum statistics (Poisson-Bernoulli) model which is very complex
model.
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1. Introduction

The random sum distribution plays a key role in both probability theory
and its applications in biology, seismology, risk theory, meteorology and
health science. The statistical significance of this distribution arises from its
applicability to real-life situations, in which the researcher often observes
only the total amount, say Sy, which is composed of an unknown random

number N of random contributions, say X's. In health science, the random
sum plays a very important role in many real-life applications. For example,
let the number of hotbeds of a contagious disease follow a Poisson
distribution with a mean of A, and let the number of sick people within the
hotbed follow a Binomial distribution. If the goal is to find the probability
that the total number of sick people is greater than 70, then the total number
of sick people within the hotbed is:

N
Sny = D Xis (1)
where X; ~ Binomial (n, p) and N ~ Poisson(}).

Another practical application of the random sum is the number of times
that it rains in a given time period, say N, which has a Poisson distribution
with mean A. If the amount of rain that falls has Bernoulli distribution and if
the rain falling in that time period is independent of N, then the total rainfall
in thetime period is:

N

Sw, = 2 Yo @
where Y, ~ Bernoulli(p) and N ~ Poisson ().

In fact, the total amounts of the random sums Sy, and Sy, are

composed of an unknown random number N of other random contributions,
say X or Y which are very complex to analyze. In most cases, the distribution
of the random sum is still unknown; in other cases, it is already known but is
too complex for the computation of the distribution function, which often
becomes too slow for many problems [1]. The saddle point approximation
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method can help us gain knowledge for these unknown difficult stetistical
behaviours.

2. Derivation of the Saddle Point CDFsfor the
Random Sum Poisson-Bernoulli M odel

To develop new estimators CDFs using saddle point approximations for
this model. Let we have the random sum Sy = X + Xp + -+ + Xy, Where

X; ' sareindependent of N, and N ~ Poisson (1), X's ~ Bernoulli(p).
The MGF for Poisson distribution is given by
My (s) = €4, 3
Aswell the MGF for Bernoulli distribution is given by
M (s) = (pe® + q). )
The cumulant generating function for N is given by

Kn(s) = In(Mn(s)),

Kn(s) = In -1
= \(e° - 1). (5)
The cumulant generating function for X is given by
Kx (s) = In(Mx (s)), (6)
Kx (s) = In(pe® + q), 7

where q+ p =1, then we can get the cumulant generating function for the
Poisson-Bernoulli random sum distribution as follows:

Ksy (8) = Kn(Kx (),
Ky (9) = MNP 1)

=A(pe®+q-1) (8)
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the saddle point is given as

Ky (s) = ape® = x, )
e® = k_)|(o
S= Inr);
and
Ky () = xpeé.

This leads to the saddle point mass function for Poisson-Bernoulli which
isgiven by

1 {k( pe§+q—1)—x Inx—);)}.

A 2n7»peé °

The first continuity-correction is

f(x) = (10)

W = sgn(é)JZ{x(ln%) M peé +q- 1)}, (11)

L ) W)

The second continuity-correction is

Wy = sgn(g)\/ 2{(Inr);j X =M pe’ +q- 1)}, (12)

where X~ = x— 0.5, then

[n55)
T, = 2Sinh| ~—2®

VAPeS. (13)
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And the third continuity-correction is

Uz = Sy/aped,
this approximation uses the same second continuity-correction while U

changed.

3. Saddle Point Approximation with Application to the
Poisson Random Sum Distribution

The Poisson random sum distribution is the sum of a random sample
from a certain distribution (continuous or discrete) with a sample size that is
independent of the Poisson random variable. This sum has wide-ranging
applications in fields such as insurance (e.g., the total claim size in a
portfolio), meteorology, mall visit frequencies, and mortality data.

4. Saddle Point Approximation with Application to the
Random Sum Poisson (A)-Bernoulli (p) M odel

This section provides numerical results that can be used to compare the
accuracies of the various saddle point approximations in discrete cases, and
considered a saddle point approximation [2] and [3] for the distribution of
this random sum statistic. As an example, suppose that N is Poisson (2), and
let X be the Bernoulli random variable, with p = 0.3. Then, the Sy) isa

random sum Poisson process with the following form:

N(t)
t>0. (19

As previoudly indicated, random sum Poisson processes are very
complicated and difficult to analyze, and therefore, approximation methods
are often used. The previous section identified the moment-generating
function, which leads to the explicit cumulant generating function. Now let
x=1 A =2, p=0.3 so, weget the saddle point
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S= In(i)
= Inl 55

and
K(3) = A(pe® + q - 1)
= 2(0.3¢%°1%8 L 0.7 -1)

= 0.3999.

Also
K"(8) = 2pe®

= 0.9999

first continuity-correction

Wy = sgn(8)y2{sx - k(S);

— +,/2{0.5108(1) — 0.3999)

= 0.4709

and
(y = {1- e SHK'(®)
= {1- e (05108), /5 9999,

Bra(X > %) =1—d><vv)—¢<vv)(é—éj.
W G

1

(15

(16)

(17)

(18)
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We can find the ® (W) from the normal CDF table,
®(0.4709) = 0.6808.

And ®(W,) by using the normal pdf distribution,

1 -t(04700)
L e

N 27
= 0.3570

$(0.4709) =

Where the first approximation is

i 1 1
Pri(X > x) = 1- 0.6808 — 0.3570( A8~ 0_3999)
= 0.4538 (19)

Whilethe secondisgivenby x™ = x-05=1-0.5=0.5.

Then
k'(5)=x-05=05
= kpe§ = 0.5,
S = In(%)
Ap
_ |n(L)
(2)(0.3)
= -0.1823
and

k(8) = A(pe® + q-1)

= 20301823, 07-1)

= —0.0999.
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Also
k"(8) = Ape®
— 2(0.3)e 01823
= 0.5000.
Then
Wy = sgn(8)/2{8x — k(3)}
= —/2{(~0.1823)(0.5) — (~0.0999)}
= 01322 (20)
and

U = 25inh(§}/k”(§)
, z{% o - 5>Jm

= —0.1290,
. A A 1 1
Pra(x > X) = 1= @) - ) 5~ - ) (21)
W
We can find the ®(w) from the CDF table
®(~0.1322) = 0.4483
and ¢(W ) isgiven by

1o 2
#(—0.1322) = %e >(-0.1322)

= 0.3954,
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Pro(X > X)=1-0.44 - 0.3954(_0. i322 -5 izgo)
= 0.4775. (22)
Third continuity-correction
Uz = 3JK'(3)
= -0.182370.5000
= -0.1289,

mxxzm=kmmwﬂwm@%—éj

1 1
=1-044- 0'3954( -0.1322 —0.1289)

= 0.4751. (23)

Now we use normal approximation to investigate the performance of
saddle point method for the first approximation

E(X) = p, E(N) =1,
Esy (9) = E(N)E(X)
= pk
=(03)(2)
=06,
where Vs (s) isgiven by
V(x) = pa, V(N) = 2,
Vs, (s) = E(N)Var(X) + (E(X))*Var(N)
= (2)(0:3)(0.7) + ((03)*(2)

= 0.6. (24)
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From the normal approximation, we get

cdf[x = “) _ cof (1%6)

= cdf (0.5163),

Br (X > x) =1-0.4483
= 0.5517.

Now we use normal approximation also to investigate the performance of
saddle point method for the second approximation as

E(X)=p, E(N) =12,
Esy (S) = E(N)E(X)
= p}L

=(03)(2)
= 0.6,

where Vg, (s) isfound as:
V(x) = pa, V(N) =2,
V(S) = E(N)Var(X) + (E(X))?Var(N)

= (2)(0.3)(0.7) + ((0.3))%(2)

- 0.6. (25)
Then
. 05- 0.6
X > x) =1- cdf —1-0.5422
Pr( ) ( J0.6 )

= 0.5478.
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The MATLAB program is used to obtain various CDF approximations
for any value in support of x. The exact probabilities are obtained using the
empirical distribution with generating one million observations.

Table 1 shows the continuity-corrected CDF approximations for the
random sum Poisson (2)-Bernoulli (0.3) model with its corresponding exact
and normal approximation for 10 different values of x.

Table 1. Continuity-corrected CDF approximations for the random sum
Poisson (2)-Bernoulli (0.3) model

Exact First-corrected Second-corr ected Third-corrected

X P(SN2X) | RSy =x) | P(SN2X) | Py(Sy2x) | P(Sn2X) | Py(Sy=x%) | P(Sn2X%)

1 0.4533 0.4538 0.5517 0.4775 0.5478 0.4751 0.5478
2 0.1222 0.1239 0.0354 0.1250 0.1226 0.13200 0.1226
3 0.221 0.2330 0.0010 0.0238 0.0071 0.02655 0.0071
4 0.0501 0.0616 0.0000 0.00350 0.0001 0.0040 0.0001
5 0.0511 0.05004 0.0000 0.05009 0.0000 0.050900 0.0000

6 | 1.755%107° | 1.855%107° | 0.0000 | 6.715+10* | 00000 | 6.898%104 | 0.0000

7 | 8663+10°° | 8708+10°% | 00000 | 2657+1077 | 00000 | 1.745%1076 | 0.0000

8 7.000%10°7 | 7.027+1077 | 0.0000 |4657%10713| 00000 |3.194+10"14| 0.0000

9 | 4129+1078 | 4952+108 | 0.0000 | 1532#108 | 00000 | 9771x107° | 0.0000

10 | 3.021+10°° | 3122+10° | 00000 |9.727%10710| 00000 |6.162+10710| 0.0000

To investigate the performance of this method we used different parameters
for thismodel given in Table 2.

Table 2. Continuity-corrected CDF approximations for the random sum
Poisson (3)-Bernoulli (0.4) model

Exact First-corrected Second-corr ected Third-corrected
X P(Sn2X) | B(Sy2x) | P(SNzX) | Py(Sy2x) | P(SNzX) | By(Sy2x) | P(SnzX)
1 0.6534 0.6515 0.5714 0.7076 0.7357 0.6352 0.7357
2 0.5112 0.5000 0.2327 0.4209 0.1190 0.3436 0.1190
3 0.1219 0.1218 0.0054 0.12251 0.0183 0.1269 0.0183
4 0.02998 0.0343 0.0003 0.0194 0.0013 0.02468 0.0013
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5 0.03110 0.03005 0.0000 7.802%1073 0.0000 8.499%1073 0.0000

6 |5.888+103 | 5.986+103 | 00000 | 2350%1073| 00000 | 1.722+1073| 0.0000

7 | 8999%1074 | 8.008¥104 | 0.0000 | 2776%«1074| 00000 | 3123+1074 | 0.0000

8 | 1.266+107° | 1.370+10° | 0.0000 | 1.994%107° | 0.0000 | 1.400#107° | 0.0000

9 | 2023+10% | 2135+10® | 00000 | 1136%10™*| 00000 | 3.443+10° | 0.0000

10 | 2322+10°° | 2312%10% | 00000 |1.394110°%| 0.0000 | 1.000+10°¢ | 0.0000

5. The Performancein Discrete Distributions

This section presents the performance of continuity-corrected CDF
saddle point approximations in a discrete distribution for the Poisson (1)-
Bernoulli (p) model. Tables 1 and 2 show the three saddle point
approximations for the random sum Poisson-Bernoulli model, corresponding
to the exact and the normal approximation. The numerical results indicate
in genera that the saddle point approximation is accurate and seems to

suggest that both P(Sy = x) and P»(Sy = X) are consistently accurate
with I53(SN > X). Throughout the study of this issue for example [4], no

final decision could arrive as to which approximation B, P, and P; are
better. Ultimately, this choice depends upon the application. In certain cases,
it is found that B(Sy > X) is better than P,(Sy > X); and, in others, it is

found to be otherwise. Still, in most cases, I53(SN > X) is better than either

of the former options. In [6], it isfound, in general, that the second and third
corrections are better than the first one. For this reason, this study suggests to
calculate py, P, and ps. If al are functioning well and share the same

accuracy (very close together), then their accuracy is supported. However, if
they differ, a choice must be made depending on the particular application at
hand [7]. Furthermore, among al the three continuity-corrected
approximations, the saddle point approach is close to exact than the normal
approximation.
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6. Conclusion

We have introduced a simple technigque to find the CDF for the discrete

random sum distribution using the saddle point distribution. In conclusion,
this study confirmed the accuracy of the saddle point approximation for the
random sum models.
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