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Abstract 

The dynamic model of Canuto and Dubovikov was designed to 
describe fully developed turbulence which also corresponds to our 
study. 

A family of models was developed to describe the nonlinear 
interactions in spectral space for an incompressible homogeneous 
turbulence (DIA, TFM, EDQNM, ...). More recently, the dynamic 
model of Canuto and Dubovikov has also been developed in the 
context of spectral representation of nonlinear mechanisms. 

In its design, the dynamic model of Canuto and Dubovikov is based  
on Wyld equations [1] which are exact formal solutions of the Navier-



Abdallah Jaouabi and Taieb Lili 620 

Stokes equations. These equations lead to represent the nonlinear 

interactions through two mechanisms leading force tf  in charge of a 

turbulent flow of energy ( )kπ  and a dependent viscosity ( )kdν  in 

spectral space wave vector .k  Through the theory of renormalization 

group (RNG), π and dν  are expressed using infinite series π. Finally, 

the series giving π contain like (IR) divergences that are not 
renormalizable, and to express π, the dynamic model of Canuto and 
Dubovikov uses the concept of energy locality [1-5]. 

Introduction 

The application of the dynamic model of Canuto and Dubovikov to two-
dimensional homogeneous turbulence is considered again directed by a 
relatively original contribution towards the study of the asymptotic behavior 
(with large T) of such a turbulence. Through these results of digital 
simulation of Chasnov [6], a framework is offered to evaluate the results of 
the dynamic model relating to the asymptotic behavior of this turbulence. 

Initialization of calculations and physical parameters: In all the 
considered calculations, the following initial spectrum of energy is used: 
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where the constant of standardization sa  is given by: 

( ) !.212 1 ssa ss
s

++=  (2) 

This choice allows us to define 2

2
0u  as being the initial kinetic energy: 
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which is obviously the number of waves for which ( )0,kE  is maximum. 
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The dynamic Reynolds number is: 

( ) ( ) ( ) ,
ν

= tltutR  (4) 

where ( )tu  is the square root of the variance speed: 

( ) ( )tutu 212=  (5) 

and ( )tl  is a dynamic scale length that is equal to the relationship between 

speed ( )tu  and the vorticity ( ),tω  defined as square root of the variance 

,2ω  that is: 

( ) ( ) ( ),ttutl ω=  (6) 

( ) .212ω=ω lt  (7) 

A simple calculation makes it possible to express the initial values ( ),0u  

( ),0ω  ( )0l  and ( )0R  according to the initial spectrum: 
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Evolution of a two-dimensional turbulence with respect to small 
Reynolds number: In this paragraph, the evolution of turbulence is 
discussed with respect to small initial Reynolds number. For large Reynolds 
numbers, Batchelor had announced that the kinetic energy becomes constant 

with large T and that the enstrophy behaves according to time T in .2−T  

The analysis of the decrease of a two-dimensional turbulence can be 
done in a way similar to that of a 3D turbulence 
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( ) ( ) ,0,~, 3
2 →π kktBtkE  (11) 

where k is small ( ).0→k  

A dimensional analysis makes it possible to find laws of decrease for the 
kinetic energy and the enstrophy in the form [6]: 

( ) ,2
2

2 −∝ vtBu  (12) 

( ) .3
2

2 −∝ω vtB  (13) 

We recall that these behaviors are obtained by supposing that the 

variances 2u  and 2ω  evolve linearly according to 2B  and depend only 

on kinematic viscosity ν and time T. 

Materials and Methods 

We solve numerically the equation: 
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governing the evolution of the energy spectrum ( ).kE  We combine the 

equations of initial energy spectrum in a classical form: 

( ) ( ),exp0, 2kAkkE n α−=  

where A, α and n are constants to be chosen according to the cases studied. 
Equations are solved numerically using a code written in FORTRAN. The 
temporal discretization is based on the Runge-Kutta fourth order, derivatives 
and integrals with respect to log k are evaluated, respectively, by using a 
finite difference scheme and using Simpson’s method. 

The wavenumber k is chosen according to the following expression 
known by octave: 

[ ].,,2 maxminmin nknkikk fi
i ∈=  



Application of the Model of Canuto and Dubovikov … 623 

The resolution includes 220k modes and corresponds to 1min =nk  and 
.220max =nk  The parameter f is taken equal to 16. 

Results 

In this part, we deal with the application of the dynamic model in order 
to find usage of the digital simulation of equations of this model, the laws of 
decrease for energy and the enstrophy. 

In the presence of the initial spectrum (1); the constant s, appearing in the 
expression of the initial spectrum, is equal to 3. The number of wave pk  is 

equal to 300 and the initial kinetic energy 2

2
0u  is equal to .2

1  

In Figure 1, the evolution of the Reynolds number R is presented 
according to the time τ defined by: 

( ) .
0

212∫ ω=τ
t
dt  

 
Figure 1. Evolution of the Reynolds number according to the time. 

This time τ can be regarded as a measurement of the time of reversal of 
turbulence. 

We show, through Figure 1, that there is a critical initial Reynolds 
number CR  for which the ( )tR  number decreases according to time when 

CRR <0  and increases when .0 CRR >  For ( )tRRR C ,0 =  evolves as soon 
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as T is higher than 5. τ is the value of ,CR  our simulation makes it possible 

to find .73,5=CR  A larger value ( )73,15=CR  is found by Chasnov. But 

the evolution of ( )tR  is qualitatively in agreement with that of Chasnov [6]. 

In Figure 2, the evolution of the laws of decrease of energy and the 
enstrophy are shown, ( )tn  and ( )tm  are exhibitors relating to these laws: 

( ),2 tntu ≈  (14) 

( ).2 tmt≈ω  (15) 

Then ( )tn  and ( )tm  are expressed as: 
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This allows us to write: 
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For ,0 CRR =  we assume that ( )tR  tends to a constant value .CR′  

Chasnov found analytical solutions for the evolution 2u  and 2ω  that 

may be written as follows: 

,2
1 122 −′ν= tRu C  (20) 

.4
1 222 −′=ω tRC  (21) 
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Let us recall that the variances 2u  and ( )2ω∇  are calculated 

according to the spectrum of energy ( ).kE  

For ,0 CRR =  Figure 2 shows that ( )tn  tends towards an equal value 

with –1 and ( )tm  tends towards a value equals to –2. 

 

Figure 2. Evolution of the exhibitors for laws of decrease of energy and 
enstrophy. 

For ,70 =R  ( ) 1−>tn  and ( ) .2−>tm  For ,30 =R  ( )tn  tends towards 

values smaller than –1 while ( )tm  tends towards values smaller than –2. 

For ,0 CRR =  we suppose that ( )tR  tends to a constant value .CR′  

 

Figure 3. Evolution of the kinetic energy and the enstrophy for .73,50 =R  
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We show in Figure 3 that the evolution of energy and the enstrophy, for 
,73,50 == CRR  is well in agreement with the analytical results (20) and 

(21). 

Decrease of a two-dimensional turbulence with respect to a large 
Reynolds number: We solve the equation of the dynamic model in the case 
of a two-dimensional homogeneous turbulence evolved by a large initial 
Reynolds number ( ).0R  

In our simulation, ( )0R  varies between 32 and 4096 following 

( )1252 ≤≤ II  relations. For that, 8 tests are conducted. The number pk  

varies each time, according to ( );0R  it is calculated using (10): 

( ) .
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+

=  

We take s equal to 3. 

 In Figures 4 and 5, we represent the evolution of the kinetic energy 2u  

and the enstrophy ,2ω  respectively, standardized by 2
0u  and .2

0ω  

 

Figure 4. Evolution of the kinetic energy according to time for: =0R         

32, 64, 128, 256, 512, 1024, 2048, 4096. 
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Figure 5. Evolution of the enstrophy according to time for: =0R  32, 64, 

128, 256, 512, 1024, 2048, 4096. 

The kinetic energy and the enstrophy decrease according to time in 
accordance with the basic equation governing the evolution of the kinetic 
energy and the enstrophy. 

 

Figure 6. Evolution of the palinstrophy according to time for: =0R  32, 64, 

128, 256, 512, 1024, 2048, 4096. 

Let us notice that the palinstrophy (Figure 6) increases at the beginning 
of the evolution before decreasing when the time is large. 

Figure 7 shows the evolution of exhibitor N relating to the decrease             

of the kinetic energy ( ( ) )tntu ≈2  with great Reynolds number. There is             

no universal law for the asymptotic evolution of energy. In addition, the 
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decrease of the kinetic energy becomes increasingly slow when ( )0R  

increases; this is explained by the increasingly large values of N. 

 

Figure 7. Evolution of the exhibitors n of the law of decrease of the kinetic 
energy for: =0R  32, 64, 128, 256, 512, 1024, 2048, 4096. 

For ( ) ,2560 <R  exhibitor N decreases until a minimum grows at the end 

of the evolution. 

For ( ) ,2560 >R  exhibitor N does not present any more minimum, it 

always increases. 

The evolution of the exhibitor m according to time is presented in         
Figure 8. We notice that, for the whole of the tests, m tends towards –0.8. 

 

Figure 8. Evolution of the exhibitors m of the law of decrease of the kinetic 
energy for: =0R  32, 64, 128, 256, 512, 1024, 2048, 4096. 



Application of the Model of Canuto and Dubovikov … 629 

This value is blamed even by Chasnov, while indicating the behavior of 

the enstrophy in 37.0−T  suggested by Carnevale et al. [7] and the behaviors 

varying between 29.0−T  and 35.0−T  given by Dritschel [8]. 

The evolution of the ( )tR  number is presented in Figure 9. We notice 

that this number increases according to time. This evolution conforms with 
the results because all the values of ( )0R  are definitely higher than .CR  

 

Figure 9. Evolution of the dynamic Reynolds number according to the time 
for: =0R  32, 64, 128, 256, 512, 1024, 2048, 4096. 

Discussions 

Within a relatively unique contribution, we applied the dynamic             
model and its equations and solved in the case of decay of two-dimensional 
homogeneous turbulence in order to analyze the results and compare them 
with results of numerical simulations obtained by direct Chasnov. 

In this context, we showed that there is an initial Reynolds number equal 
to 5,73 0R  critical: if ,73,50 <R  while the turbulence enters a final period of 

decline and if ,73,50 >R  turbulence evolves with Reynolds number 

increasingly large. 

By studying the evolution of Reynolds number, we did not find universal 
behavior for the kinetic energy, no power law is observed. For the enstrophy, 

a law in 8.0−T  is highlighted in perfect agreement with simulations [6]. 
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Conclusion 

In all the tests we carried out, the results found from the dynamic model 
are in agreement with those from the direct digital simulations of Chasnov. 
Thus, we validate the dynamic model of Canuto and Dubovikov in the case 
of the decrease of a two-dimensional homogeneous turbulence to large 
Reynolds numbers. 

The kinetic energy as well as the enstrophy decrease throughout 
simulation for the whole of the tests carried out in agreement with the 
equations of basic evolution. 

For the palinstrophy (we did not write its equation of evolution), the tests 
show that it increases towards a maximum, then decreases. 

In the case of a two-dimensional turbulence, we also show that there is 
no universal law for the decrease of energy. 

As for the enstrophy, a law in power is highlighted. 
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