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Abstract 

In a recent article, Almendra-Arao et al. [5] shown that the classical 
asymptotic non-inferiority test for two independent proportions 
behaves in a liberal form, that is, the type I error is inflated and this 
happens inclusively for sample sizes as large as 1000, moreover the 
inflation is severe. This problem is not an exception of this test, but                
it is a common weakness of asymptotic tests. Therefore, it is 
recommended to have a way of adjusting the nominal level to specify 
to apply the asymptotic statistical test. In this research, we use the 
binary search algorithm to adjust both, the nominal significance level 
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and the test size of any asymptotical non-inferiority test in a 
conservative form, that is, to obtain an adjusted test size less than or 
equal to the nominal significance level. The method is motivated by 
using the classical asymptotic non-inferiority test for two independent 
proportions to conduct the presentation; however the scope for the 
application of this method is wide and includes any asymptotic non-
inferiority or superiority test for two independent proportions. 
Calculations were carried out in a computational program in C++ 
written by the authors pursuing that objective. 

Introduction 

It is currently a common practice to use active-controlled trials in place 
of placebo-controlled trials to support marketing authorization of new 
medical products. Frequently active-controlled trials are based on non-
inferiority trials, especially since the appearance of several regulatory 
guidelines that now recommend the use of this design in active-controlled 
trials. Non-inferiority statistical tests are used to demonstrate that a new 
therapy (usually with less secondary effects, easier application or less cost) is 
not substantially inferior in efficacy to the standard one. 

Among several non-inferiority tests for two proportions (Almendra-Arao 
[1]; Almendra-Arao [4]; Dunett and Gent [12]; Blackwelder [8]; Miettinen 
and Nurminen [18]; Hauck and Anderson [14]; Farrington and Manning [13]; 
Chan [9]; Chen et al. [11]; Tu [21]; Martin and Herranz [16]; Martin and 
Herranz [17]; and Li and Chuang-Stein [15]), the classical asymptotic test or 
Blackwelder test has an outstanding role because it is frequently used in 
practice, mainly due to its simplicity. However, as usual for asymptotical 
tests, the Blackwelder test has the disadvantage of being liberal in that the 
test sizes are greater than the required nominal significance level ( ).α  

Li and Chuang-Stein [15] made an evaluation of the performance of two 
very often used statistical procedures, the classical asymptotic normal 
approximation and the same method with the Hauck-Anderson continuity 
correction, their evaluation was based on simulation to estimate type I error 
and power. 
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Almendra-Arao [1] continued this investigation, but did an exact 
calculation of type I errors and test sizes instead of estimation by simulation. 
The main conclusion of the work done in Almendra-Arao [1] was that the 
test is indeed liberal, as test sizes were greater than the nominal level ,α  

considering under study configurations ,30030 21 ≤=≤ nn  for non-

inferiority margin 0.10 and 0.15 and nominal significance level 0.025 and 
0.05. 

As currently understood, in the clinical context non-inferiority tests are 
often applied for sample sizes greater than 300. It is natural, then, to ask if 
for these larger sample sizes the behavior is even acceptable. 

Thus, in continuing their research, Almendra-Arao et al. [5] developed a 
numerical study of the behavior of test sizes for the Blackwelder test. This 
analysis was based on sample sizes ( ) ;1000...,,103021 == nn  nominal 

significance levels 0.025 and 0.05 and non-inferiority margins 0.05, 0.10, 
0.15, 0.20; also were considered unbalanced designs with sample sizes 
( )121 5.1, nnn =  with ( ) ...,,50501 =n  1000; and ( )221 ,5.1 nnn =  with 

( ) .1000...,,50502 =n  The main conclusion in this investigation was that 

although it is known theoretically that test sizes converge to the nominal 
significance level ,α  the test continues to remain liberal (test sizes are 
greater than )α  for the studied configurations, even for sample sizes as large 

as 1000, for balanced designs, and for sample sizes as large as 1500, for 
unbalanced designs. For all configurations studied in Almendra-Arao et al. 
[5], the test sizes were greater than .α  

As in a statistical test it is essential to control type I errors, it is also 
advantageous to have a way of guaranteeing that the test size of an 
asymptotic test is less than or equal to the nominal level ( )α  because 

otherwise one loses the control of the type I error and one would have the 
possibility of making a type I error greater than the avowed ( ).α  

For this reason, the goal of this research is to introduce the binary search 
algorithm in this context to adjust both the nominal level and the test size 
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such that when the test is performed, it can be guaranteed that the test size is 
less than or equal to .α  

Although the method is applicable to any asymptotic test, it is presented 
in a tangible form, through the use of the classical asymptotic non-inferiority 
test for two independent proportions. To carry out the necessary calculations 
for this test for large sample sizes in a reasonable time, first it was necessary 
to solve several numerical difficulties, as shown below. These difficulties 
were resolved by applying the recommendations in Almendra-Arao [3]. 

The Framework 

Consider two binomial independent random variables 1X  and 2X  with 

parameters ( )11, pn  and ( ),, 22 pn  respectively, where 1p  and 2p  represent 

true response probabilities of the standard drug and new drug, respectively, 
and consider the set of hypotheses 

( )120 : pgpH ≤  vs ( )121 : pgpH >  (1) 

with [ ] ,1,0: R→g  a nondecreasing function of class 2C  and ( ) 11 ppg ≤  

for all [ ].1,01 ∈p  

The function g can be represented in the form ( ) ( ),111 pppg δ−=  the 

function δ  is called the margin function. The domain of the function δ  will 
be denoted by .δD  

Naturally, the margin function must be a non-negative function, that is, 
( ) ,01 ≥δ p  for all ;1 δ∈ Dp  the special case ( ) 01 ≡δ p  leads to the 

superiority case, and when ( )1pδ  is not identically zero on δD  corresponds 

properly to the non-inferiority instance. 

Let T denote a statistic for the hypothesis testing problem (1). 

Thus, the joint likelihood function is 

( ) ( )∏
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and the power function is ( ) ( )
( ) ( )

∑
α∈

=β
TRxx

T xxppLpp
21,

212121 ,,;,,  

where ( )αTR  is used to denote the critical region for the statistic T. 

The corresponding sample space is { } { }21 ...,,0...,,0 nn ×=χ  and the 

parameter space can be conveniently represented as [ ] .1,0 2=Θ  

Therefore, the test size is given by ( ),,sup 21
0

ppTβ
Θ∈θ

 where 

( ) ( ){ }112210 :, ppppp δ−≤Θ∈=Θ  is the null space. 

An essential property for non-inferiority tests is that the critical region 
satisfies the two properties in the next definition. 

A critical region TR  for a statistic T is a Barnard convex set if the 

following two properties are satisfied: 

(a) ( ) ( ) .0,1,,1, 22112121 nxnxRxxRxx TT ≤≤≤≤∀∈−⇒∈  

(b) ( ) ( ) .10,0,1,, 22112121 −≤≤≤≤∀∈+⇒∈ nxnxRxxRxx TT  

That the critical regions be Barnard convex sets is not only a matter of 
convenience to compute test sizes, but it is also a necessary requirement in 
order for the non-inferiority test to be coherent; see for example Almendra-
Arao [2] and Almendra-Arao and Sotres-Ramos [7]. 

Another condition, to be fulfilled by non-inferiority critical regions for 
balanced designs, is defined as follows. 

Let .21 nnn ==  A critical region TR  for a statistic T is said to fulfill 

the condition of symmetry in the same tail (SST) if ( ) ⇒∈ TRxx 21,  

( ) ., 12 TRxnxn ∈−−  

Classical Asymptotic Non-inferiority Test 

When in the expression (1) the difference between proportions as a 
dissimilarity measure is used, the hypotheses to contrast are 
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0210 : dppH ≥−  vs ,: 0211 dppH <−  (2) 

where 0d  is a positive constant, usually small. 

The Blackwelder’s or classical statistic to contrast these hypotheses is 

( ) ,ˆ
ˆˆ

, 021
210 σ

−−
=

dppXXT  

where 
i
i

i n
Xp =ˆ  is the maximum likelihood estimator of ip  for 2,1=i  and 

σ̂  is the following estimator of the standard deviation of ,ˆˆˆ
21 ppd −=  

( ) ( ) .
ˆ1ˆˆ1ˆˆ

21

2
22

1
11 ⎟

⎠
⎞

⎜
⎝
⎛ −+−=σ n

pp
n
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It is known that the statistic 0T  has normal standard asymptotic 

distribution. 

For a given nominal significance level ,α  the critical region of the 
asymptotic test is given by 

( ) ( ) ( ){ },,:, 210210 α−<χ∈=α zxxTxxRT  

where αz  is the upper quantile α  of the standard normal distribution, in 

other words, ( ) .α=> αzZP  Notation for the critical region ( )α0TR  very 

often will be simplified to ( )α0,0 RRT  or .0R  

( )21,min2
1

nnC =  is known as Hauck-Anderson continuity correction 

and will be used in what follows. 

Thus, we have the other test which considers this continuity correction; 
its statistic is given by 

( ) .ˆ
ˆˆ

, 021
211 σ

+−−
=

CdppXXT  

For the test ,1T  we will use a similar notation as used for .0T  
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Since, as by definition 
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it is clear that σ̂  is equal to zero in four points and in these points 0T  and 1T  

remain undefined. To be able to calculate both tests in these points, 
Almendra-Arao [1] suggested a redefinition of ,σ̂  which will be used in what 
follows. 

As it is known, when the critical region for this non-inferiority test is a 
Barnard convex set, the test size is given by 

test size 
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see for example Almendra-Arao [1], Röhmel and Mansmann [20] and 
Almendra-Arao and Sotres-Ramos [6]. 

As was shown by Almendra-Arao et al. [5] and Almendra-Arao [1], the 
above redefinition of σ̂  is essential in order for the critical regions of the 
statistical tests 0T  and 1T  to meet the conditions for the Barnard convex set 

definition and SST. 

Furthermore, if the critical region fulfills SST, then the expression (3) 
can be reduced to 

test size 
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see for example Almendra-Arao [1]. 
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Hereafter, we will use ( )αts  to denote the test size for a given nominal 
level .α  

Adjusting Nominal Levels and Test Sizes 

Prior to presenting the technique to adjust the nominal significance levels 
and the test sizes, we will begin this section by explaining the procedure 
necessary to calculate test sizes. 

When the critical region for a non-inferiority test is a Barnard convex     
set, Almendra-Arao [3] proved that the power function has manageable 
representations. Therefore, under such assumption it is practical to apply 
Newton’s method. In the following, we describe how to calculate test sizes 
by using Newton’s method. 

Procedure used to calculate test sizes 

For this procedure we have fixed .,,, 021 αdnn  

1. Verify that the critical region is a Barnard convex set or not. 

2. Verify that the critical region fulfills SST. 

3. If the critical region is both, a Barnard convex set and fulfills SST, 
then use (4), discretizing the interval ( )[ ]21, 00 dd +  with a step ,Δ  in this 

investigation we took 01.0=Δ  for the increments of p in (4) to obtain an 
initial approximation 0α  to the test size. We denote the corresponding value 

of the parameter p by .0p  

4. If the critical region is a Barnard convex set and does not fulfill SST, 
then use (3), discretizing the interval [ ]1,0d  with a step ,Δ  we took 

01.0=Δ  for the increments of p in (3) to obtain an initial approximation to 
the test size. We denote the corresponding value of the parameter p by .0p  

5. Use the value 0p  as seed or initial value to apply Newton’s method. 

6. Apply Newton’s method and denote the approximation obtained in the 
step i, for ,1≥i  as .iα  If the obtained succession ip  converges, then there 
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exists a pair of consecutive approximations, denoted by tp  and ,1+tp  with 

,0≥t  such that ;1 ε<− +tt pp  in this research, we took, .00001.0=ε  

7. If Newton’s method fails to converge, then use the exhaustive method 
with a refinement ,Δ′  in this work, we took .1.0 Δ=Δ′  If the critical region 
fulfills SST, this new application of exhaustive method is on the interval 
[ ] ( )[ ],21,5,5 0000 ddpp +Δ+Δ− ∩  whereas that if the critical region does 

not fulfill SST, it is on the interval [ ] [ ].1,5,5 000 dpp ∩Δ+Δ−  

For more details about the above procedure, please consult Almendra-
Arao [3]. 

Note that the previous description depends on the statistic only when 
using (3) or (4), these formulae can be easily generalized and therefore can 
be applied to any statistical test.  

In all cases, we have studied in the present investigation, the critical 
regions were Barnard convex sets. However, if some critical region is not a 
Barnard convex set, it is possible to apply the procedure described above to 
the Barnard convex hull, see Almendra-Arao [2]. 

In all balanced cases (equal sample sizes) that we have analyzed in this 
research, SST property was fulfilled. 

Hereafter, we will be using the following notation. 

:α  nominal significance level, that is, the required nominal level, 
usually 0.025 or 0.05. 

:adjα  adjusted nominal significance level that is necessary to specify, 

such that, when used with the testing procedure ( )10  or TT  then the 

corresponding test size is less than or equal to .α  

:adjts  adjusted test size, this is the test size obtained when the nominal 

level adjα  is used with the test procedure, in other words, this is the real test 

size corresponding to the nominal test size .adjα  
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Next we describe the procedure to search ,adjα  this procedure is based 

on the computational binary search algorithm. In all the processes we fixed 
the values of 021 ,, dnn  so what will change is the nominal level to apply the 

procedure above. 

For a concise description of the method in general, first we present a 
useful notation. 

Given a closed interval [ ],, iii baI =  the following notation will be used: 

:im  middle point of ,iI  that is, ( ) ,2iii bam +=  

:1+iL  the left half subinterval of ,iI  that is, ( )[ ],2,1 iiii baaL +=+  

:1+iR  the right half subinterval of ,iI  that is, ( )[ ].,21 iiii bbaR +=+  

The method we are going to present is a direct application of the binary 
search algorithm to determine a suitable test size less than or equal to the 
nominal value and close to it. 

The proposed method 

(1) Calculate the test size using the above procedure with the original ,α  
that is, calculate ( ).αts  If ( ) ,α≤αts  then no adjustment is necessary because 

the test size is less than or equal to the nominal level ( ).α  Thus, the process 

is finished and moreover ( )., α=α=α tstsadjadj  

(2) If ( ) ,α>αts  take [ ]α= ,01I  and compute ( ).1mts  

(3) If ( ) ,1 α≤mts  take .22 RI =  If ( ) ,1 α>mts  take .22 LI =  Compute 

( ).2mts  

(4) Repeat the point (3) k times with .1≥k  Note that in k iterations of 

(3), we have computed ( )1+kmts  and .21 1
1

+
+ =− k

kk mm  

(5) If ( ) α>imts  for all ,1...,,1 += ki  the test sizes are always greater 

than the nominal value ( )α  and it is not possible to adjust the value of the 

significance level to have test size less than or equal to .α  
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(6) If for some i with ( ) ,,11 α≤+≤≤ imtski  then there are two cases. 
If ( ) ,1 α>+kmts  then ( )kadj mtsts =  and .kadj m=α  Whereas that if 

( ) ,1 α≤+kmts  then ( )1+= kadj mtsts  and .1+=α kadj m  

Note that in the description above there is no particular restriction to any 
specific statistic, so this method can be applied to any asymptotical statistical 
test. 

In the program, we fixed 8=k  because the difference between two 

consecutive adjusted nominal levels is ,00195313.021 9
98 ==− mm  

sufficient to have a good approximation. 

Analyzing the Behavior of Adjusted Values for the  
Classical Non-inferiority Test 

To calculate the adjusted values, we can proceed in the following form: 

1. Use the program written by the authors, introducing interactively the 
following values: sample sizes ( ),, 21 nn  non-inferiority margin ( )0d  and the 

nominal significance level ( ).α  

2. The program will show you on the screen the following results: the 
initial test size ( )( ),αts  the adjusted nominal value ( )adjα  and the adjusted 

test size ( )adjts  for both, 0T  and .1T  

3. Once you have obtained the value ,adjα  apply the Blackwelder test by 

using the value adjα  as the nominal significance level, that is, instead of .α  

To reject or not reject the null hypotheses, it is important to note that the 
adjusted Blackwelder critical region is given by {( ) ( ) <χ∈ 2121 ,:, xxTxx i  

}adjzα−  for .1,0=i  

To compute these adjusted values, the C++ program written by the 
authors can be obtained by request to the authors. This program includes 
numerical verification of both conditions in the Barnard convex set definition 
and SST condition in the case of balanced designs. 
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Balanced designs 

To show the behavior of the test sizes, the adjusted test sizes and the 
adjusted nominal significance level, for balanced designs ( ),21 nn =  we 

present two plots including the values of test size, adjts  and .adjα  In the 

horizontal axis the sample size is plotted with ( ).21 nn =  

Figures 1-2 correspond to 0T  and ,1T  respectively, both for ,10.00 =d  

.,05.0 21 nn ==α  

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1
0.11
0.12

0 100 200 300 400 500 600 700 800 900 1000
sample size (n1=n2)

test size

1.2α

α

.8α

ts_adj

α_adj

 

Figure 1. Test sizes, adjts  and ,adjα  for ,05.0,, 210 =α= nnT  .10.00 =d  
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Figure 2. Test sizes, adjts  and ,adjα  for ,05.0,, 211 =α= nnT  .10.00 =d  
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From Figures 1-2, we note that the original test size is always greater 
than the nominal test size and in general terms test sizes decrease when 
sample sizes increase; moreover it is noted that test sizes are quite inflated 
inclusive for large sample sizes. For example, for 46021 == nn  the test 

sizes are 0.68399 and 0.066237 for 0T  and ,1T  respectively; these values 
correspond to inflation of 36.80% and 32.47%, respectively. Additionally, 
for 99021 == nn  the test sizes are 0.61344 and 0.059717 for 0T  and ,1T  
respectively, these values correspond to an inflation of 22.69% and 19.43%, 
respectively. 

Test sizes were adjusted accordingly, particularly for sample sizes 
greater than or equal to 300. The adjustments required for the nominal level 
were less in the case of 1T  than in 0T  due that better performance of test sizes 

for 1T  and the adjusted test sizes for 1T  were better than those for .0T  

Unbalanced designs 

Now, to show the behavior of the test sizes, the adjusted test sizes and 
the adjusted nominal significance level, for unbalanced designs we present 
plots including the values of test sizes, adjts  and adjα  in the horizontal axis 

the sample size is plotted ( )1n  with .5.1 12 nn =  Figures 3-4 correspond to 

0T  and ,1T  respectively, both for .5.1,,05.0,10.0 1210 nnnd ==α=  
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Figure 3. Test sizes, adjts  and ,adjα  for ,05.0,5.1, 120 =α= nnT        

=0d .10.0  
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Figure 4. Test sizes, adjts  and ,adjα  for ,05.0,5.1, 121 =α= nnT  

.10.00 =d  

Figures 3-4 show that the original test size is always greater than the 
nominal test size, in general terms test sizes decrease when sample sizes 
increase and test sizes are quite inflated inclusive for large sample sizes. In 
this situation, for ,5501 =n  8252 =n  the test sizes are 0.067322 and 

0.064421 for 0T  and ,1T  respectively, corresponding inflation was of 

34.64% and 28.84%, respectively. 

As for the balanced case, for the unbalanced one, test sizes could be 
adjusted in a convenient form, especially for sample sizes greater than or 
equal to 300. 

Also it is noted that the adjusted required for the nominal level were less 
in the case of 1T  than for 0T  due to better performance of test sizes for 1T  

and the adjusted test sizes for 0T  were better than those for .0T  

Example 

For illustration on how to use the proposed procedure, the following 
example is presented, in which we explore the data corresponding to a 
published non-inferiority trial, originally presented and analyzed by Rodary 
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et al. [19]. For the analysis, in each example we will apply both tests, 0T  and 

.1T  

To show that chemotherapy (a new treatment) is not inferior to 
radiotherapy (control or standard treatment), authors in Rodary et al. [19] 
presented a randomized clinical trial of 164 children in which the statistical 
analysis was based on a non-inferiority margin 10.00 =d  and a nominal 

significance level .05.0=α  The chemotherapy and radiation group success 
response rates were 83/88 and 69/76, respectively. 

Chan’s asymptotic test (see Chan [9]), has the same form as ,0T  the only 

(and very important) difference is that to estimate standard deviation in the 
denominator Chan’s test uses as proportion estimators the maximum 
likelihood estimators restricted under the null hypothesis. 

With Chan’s asymptotic test, Chan [9] analyzed these results, for this 
asymptotic test, Chan [10] computed the test size obtaining the value 0.0578. 
That is to say, the “real” test size was 0.0578 which is 15.6% greater than the 
nominal value (0.05), in other words, the test is liberal as the test size is 
greater than the nominal value in this situation. 

Below we discuss the same example using the Blackwelder test. 

By running the program, we wrote for this work, we obtain directly the 
values presented in Table 1. As shown in Table 1, the test sizes are 0.11209 
and 0.05636 for the test with and without continuity correction, respectively. 

Again, we conclude that the test is liberal, that is, not conservative. 

As ( ) 2733.383,690 −=T  and ( ) 1132.383,691 −=T  and as both values 

are less than ,64.1−=− αz  then both tests reject the null hypothesis 

concluding non-inferiority. 

However, the above conclusion was obtained at the significance levels of 
0.112087 and 0.05636 for 0T  and ,1T  respectively. 
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Table 1. Values of test sizes for ,05.0=α  and adjusted nominal levels 
( )adjα  to obtain an adjusted test of size ,α≤adjts  for both 0T  and 1T  

 α_adj ts_adj test size

0T  0.01250 0.04697 0.11209

1T  0.02500 0.04697 0.05636

Although the adjusted nominal level adjα  for the test without continuity 

correction (0.01250) is smaller than that for the test with continuity 
correction (0.02500), in this case both tests obtained the same adjusted test 
size ( ),adjts  that is 0.04697. 

In this situation, ( ) ,2414.22733.383,69 0125.00 −=−=−<−= α zzT adj  

and ( ) ,96.11132.383,69 025.01 −=−=−<−= α zzT adj  therefore for both 

tests the conclusion is to reject the null hypothesis confirming the non-
inferiority of the chemotherapy over the radiotherapy to the significance 
level 0.046973. 

Now consider the hypothetical case in which we would obtain two less 
successes for the new treatment (chemotherapy) and two more successes for 
the reference treatment (radiotherapy), that is, that the chemotherapy and 
radiation group success response rates were 81/88 and 71/76, respectively. 

Thus, we have that ( ) .64.11291.281,71 05.00 −=−=−<−= α zzT  

Therefore, we must reject the null hypothesis with a true test size of 
.24.2112087.0 α=  However, using the test 0T  with the adjusted test             

size 0.046973, one obtains ( ) 0125.00 1291.281,71 zzT adj −=−>−= α  

,2414.2−=  and therefore in this case the null hypothesis is not rejected. 

Thus, if one is not willing to accept a type I error larger than the nominal 
level (in fact too large), and instead accept a type I error less than the 
nominal level, then one should not reject the null hypothesis for this 
hypothetic case as was shown. 



Adjusting Nominal Significance Levels and Test Sizes … 83 

Discussion and Conclusions 

Asymptotic tests usually behave in a liberal form, that is, test sizes are 
greater than the nominal values. In this work, we have analyzed the 
performance of the classical asymptotic non-inferiority test for non-
inferiority for two independent proportions. The idea was to force the test to 
have a type I error less than or equal to the nominal level, which can be 
guaranteed if the test size is less than or equal to the nominal level. 

In clinical investigations unbalanced designs are prevalent. Thus, 
because of the enormous quantity of possibilities, it is not practical to prepare 
tables for many different configurations of significance levels, sample sizes 
and non-inferiority margins. 

Therefore, for practical purposes, we advise the use of the program we 
have written for that goal, that is, for adjusting both the test size and the 
nominal level. This program can be obtained directly by request to the 
authors. 

For balanced design, we have analyzed the configurations ,3021 == nn  

,15.0,10.0,05.0,05.0,025.0,1000...,,40 0 ==α d  for 0T  and ,1T  whereas 

that for the unbalanced design we studied the configurations ,5.1, 121 nnn =  

for 1000...,,100,501 =n  and ,5.1, 212 nnn =  for =2n  1000...,,100,50  

for ,15.0,10.0,05.0,05.0,025.0 0 ==α d  or 0T  and .1T  

For all of these configurations the behavior of test sizes and adjusted 
values in the proposed form are similar. 

In this work, we have focused on adjusting the nominal levels and test 
sizes. It would serve well to carry out a power study to assess the impact of 
these adjustments applied in the power of the test, however for reasons of 
anticipated length and space concerns, we postpone such analysis. 

The proposed method is based on the computational binary search 
algorithm which is a deceptively simple algorithm, however as in each 
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iteration the algorithm eliminates half of the remaining possibilities, making 
binary searches very efficient. Specifically, for k iterations, we have an error 

less than or equal to .21 1+k  In this work, we took 8=k  consequently the 

error in determining the adjusted nominal levels is less than or equal to 
0.00195313. 

Finally, note that the topic exposed in this article provides practical 
application to previous works and the ideas exposed in this paper can be 
applied straightforward to any asymptotic non-inferiority test for two 
independent proportions, for in doing so, it is enough to change the statistic 
under consideration and to adapt the domain of p in formula (3) to the 
respective statistic. 
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