Keywords and phrases: explicit formulas for the derivatives and decompositions, polynomial coefficients, Euclidean division theorem, Horner’s method, KdV equation
Received: November 21, 2023; Revised: December 5, 2023; Accepted: December 28, 2023; Published: March 20, 2024
How to cite this article: Clovis Taki Djeumen Tchaho, Explicit formulas for the derivatives and decompositions by the polynomial coefficients and extension to hyperbolic functions as new solution prototypes for KdV equation, Far East Journal of Dynamical Systems 37(1) (2024), 13-49. http://dx.doi.org/10.17654/0972111824002
This Open Access Article is Licensed under Creative Commons Attribution 4.0 International License
References: [1] J. Lei, C. Xi, F. Zun-Tao, L. Shi-Kuo and L. Shi-Da, Periodic solutions to KdV-Burgers-Kuramoto equation, Commun. Theor. Phys. 45 (2006), 815-818. [2] N. A. Kudryashov, Hamiltonians of the generalized nonlinear Schrödinger equations, Mathematics 11 (2023), 2304. [3] R. Njikue, J. R. Bogning and T. C. Kofané, Exact bright and dark solitary wave solutions of the generalized higher-order nonlinear Schrödinger equation describing the propagation of ultra-short pulse in optical fibers, Journal of Physics Communication 2 (2018), 025030. [4] A. H. Arnous, A. Biswas, A. H. Kara, D. Milovic, Y. Yildirim and H. M. Alshehri, Sequel to cubic-quartic optical soliton perturbation with complex Ginzburg-Landau equation by the enhanced Kudryashovs method, IET Optoelectron 16 (2022), 149-159. [5] M. A. Akbar, F. A. Abdullah, Md. T. Islam, M. A. Al Sharifd and M. S. Osmand, New solutions of the soliton type of shallow water waves and superconductivity models, Results in Physics 44 (2023), 106180. [6] A. R. Seadawy, N. Nasreen and L. Dian-Chen, Optical soliton and elliptic functions solutions of Sasa-Satsuma dynamical equation and its applications, Appl. Math. J. Chin. Univ. 36 (2021), 229-242. [7] C. T. Djeumen Tchaho, J. R. Bogning and T. C. Kofané, Construction of the analytical solitary wave solutions of modified Kuramoto-Sivashinsky equation by the method of identification of coefficients of the hyperbolic functions, Far East J. Dyn. Syst. 14(1) (2010), 17-34. [8] C. T. Djeumen Tchaho, J. R. Bogning and T. C. Kofané, Multi-soliton solutions of the modified Kuramoto-Sivashinsky equation by the BDK method, Far East J. Dyn. Syst. 15(2) (2011), 83-98. [9] G. Akram and F. Batool, Solitary wave solutions of the Schäfer-Wayne short-pulse equation using two reliable methods, Opt. Quant. Elec. 49 (2017), 14. [10] M. Mijanur Rahman, M. A. Habib, H. M. Shahadat Ali and M. Mamun Miah, The generalized Kudryashov method: a renewed mechanism for performing exact solitary wave solutions of some NLEEs, J. Mech. Cont. and Math. Sci. 14 (2019), 323-339. [11] E. J. Parkes and B. R. Duffy, An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comp. Phys. Commun. 98 (1996), 288-300. [12] S. Malik, S. Kumar, K. S. Nisar and C. A. Saleel, Different analytical approches for finding novel optical solitons with generalized third-order nonlinear Schrodinger equation, Res. Phy. 29 (2021), 104755. [13] Y. Yildirim, Optical solitons to Sasa-Satsuma model in birefringent fibers with trial equation approach, Optik. 185 (2019), 269-274. [14] W. Hereman and A. Nuseir, Symbolic method to construct exact solutions of nonlinear partial differential equations, Math. Comput. Simulation 43 (1997), 13 27. [15] Y. Chen and Z. Yan, The weierstrass elliptic function expansion method and its applications in nonlinear wave equations, Chaos Solit. Fract. 29(4) (2006), 948 964. [16] J. R. Bogning, C. T. Djeumen Tchaho and T. C. Kofané, Construction of the soliton solutions of the Ginzburg-Landau equations by the new Bogning-Djeumen Tchaho-Kofané method, Physica Scripta 85 (2012), 025013-025017. [17] C. T. Djeumen Tchaho, New Method of Construction of the Solitary Wave Solutions of Some Physical Nonlinear Partial Differential Equations, Doctorat/Ph.D. Thesis University of Yaounde I, Yaoundé (Cameroon), 2015. [18] J. R. Bogning, Mathematics for Nonlinear Physics : Solitary Waves in the Center of Resolutions of Dispersive Nonlinear Partial Differential Equations, Dorrance Publishing Co., Pittsburgh, USA., 2019. [19] J. R. Bogning, C. T. Djeumen Tchaho and T. C. Kofané, Generalization of the Bogning-Djeumen Tchaho-Kofané method for the construction of the solitary waves and the survey of the instabilities, Far East J. Dyn. Syst. 20(2) (2012), 101 111. [20] A.-M. Wazwaz, New sets of solitary wave solutions to the KdV, mKdV and the generalized KdV equations, Communications in Nonlinear Science and Numerical Simulation 13 (2008), 331-339. [21] A. V. Slyunyaev and E. N. Pelinovskii, Dynamics of large-amplitude solitons, J. Exper. Theo. Phys. 116 (1999), 318-335. [22] R. D. Skeel and M. Berzins, A method for the spatial discretization of parabolic equations in one space variable, SIAM J. Sci. Stat. Comput. 11 (1990), 1-32. [23] X. Hubaut, Méthode de Horner- Mathématique du secondaire, Université Libre de Bruxelles (1995-2000). https//xavier.hubaut.info/coursmath/ [24] N. Roby, Lois polynomes et lois formelles en théorie des modules, Ann. Scient. Éc. Norn. Sup. 3e série, t. 80 (1963), 213-348. [25] Méthode de Ruffini-Horner 2008. https//fr.m.wikipedia.org [26] Méthode de Horner: définition et explications, 2008. https//www.techno.science.net [27] La Méthode de Horner, 2021. https//www.mathweb.fr [28] Schéma de Horner, 2018. https//lamatuenautodidacte.wordpress.com [29] Grille Horner, Loi du reste (Rappels), 2015, https//www.yumpu.com [30] H. M. Omanda, G. N’tchayi Mbourou, C. T. Djeumen Tchaho and J. R. Bogning, Kink-bright solitary wave solutions of the generalized Kuramoto-Sivashinsky equation, Far East J. of Dyn. Syst. 33(1) (2021), 59-80. [31] C. T. Djeumen Tchaho, H. M. Omanda and D. Belobo Belobo, Hybrid solitary waves for the generalized Kuramoto-Sivashinsky equation, Eur. Phys. J. Plus 133 (2018), 387. [32] C. T. Djeumen Tchaho, H. M. Omanda, G. N’tchayi Mbourou, J. R. Bogning and T. C. Kofané, Multi-form solitary waves solutions of the KdV-Burgers-Kuramoto equation, J. Phys. Commun. 3 (2019), 105013. [33] C. T. Djeumen Tchaho, H. M. Omanda, G. N’tchayi Mbourou, J. R. Bogning and T. C. Kofané, Higher order solitary wave solutions of the standard KdV equations, Open J. Appl. Sci. 11 (2021), 103-125. [34] C. T. Djeumen Tchaho, H. M. Omanda, G. N’tchayi Mbourou, J. R. Bogning and T. C. Kofané, Hybrid dispersive optical solitons in nonlinear cubic-quintic-septic Schrödinger equation, Opt. Phot. J. 11 (2021), 23-49. [35] C. T. Djeumen Tchaho, J. R. Bogning and T. C. Kofané, Modulated soliton solution of the modified Kuramoto-Sivashinsky’s equation, Amer. J. Comput. Appl. Math. 2 (2012), 218-224. [36] C. T. Djeumen Tchaho, J. P. Ngantcha, H. M. Omanda, B. R. Mbock Um, T. B. Ekogo and J. R. Bogning, Construction of new surface wave solutions of the modified KdV equation, Open J. Appl. Sci. 12 (2022), 196-215. [37] H. M. Omanda, C. T. Djeumen Tchaho and D. Belobo Belobo, Hybrid solitary wave solutions of the Camassa-Holm equation, Int. J. Nonl. Sci. Num. Simul. 24 (2023), 1589-1600.
|