ON THE SEMIRING \(\left(\begin{array}{cc} R & \Gamma \\ S & L \end{array} \right) \)

SUJIT KUMAR SARDAR
Department of Mathematics, Jadavpur University, Kolkata, India

Abstract: H. S. Vandiver introduced the notion of semiring as a generalization of ring in the year 1934. A ring \(R \) becomes a semiring when \((R, +) \) is a semigroup instead of a group. In 1964, N. Nobusawa, to provide algebraic home to \(\text{Hom}(A, B), \text{Hom}(B, A) \) and to \(M_{m \times n}(R), M_{n \times m}(R) \), where \(A \) and \(B \) are additive abelian groups and \(R \) is a ring, introduced the notion of an algebraic structure what is known as \(\Gamma \)-ring. \(\Gamma \)-ring not only generalizes the notion of ring but also the notion of ternary ring. In 1981, M. K. Sen further generalized the notion of \(\Gamma \)-ring and introduced the notion of \(\Gamma \)-semigroup. Taking impetus from M. K. Sen’s work on \(\Gamma \)-semigroup M. M. K. Rao introduced the notion of a \(\Gamma \)-semiring in 1995. It turns out to be a generalization of semiring as well as of \(\Gamma \)-ring. In 2002 the present author and T. K. Dutta introduced the notion of operator semirings of a \(\Gamma \)-semiring and developed the theory of \(\Gamma \)-semiring to a considerable extent. In 2008 the present author and B. C. Saha introduced the notion of a both sided \(\Gamma \)-semiring, i.e., Nobusawa \(\Gamma \)-semiring. To every Nobusawa \(\Gamma \)-semiring one can associate a matrix like semiring \(\left(\begin{array}{cc} R & \Gamma \\ S & L \end{array} \right) \), where \(R \) and \(L \) are respectively the right and left operator semirings of \(S \). Though the concept of a semiring generalizes that of a ring the ideal properties of semiring sometimes differ from the properties of ring ideals. In order to amend this gap, the concept of \(k \)-ideals and \(h \)-ideals in a semiring were introduced by D. R. LaTorre in 1965. By using the notion of \(k \)-ideal of a semiring Olson et al. introduced the notions of pre-prime and pre-semiprime ideals. The present author and B. C. Saha showed that like \(k \)-ideals, \(h \)-ideals could also be used to define new types of ideals called \(h \)-prime and \(h \)-semiprime ideals in semirings. These notions were then transferred to \(\Gamma \)-semirings. In this talk, we investigate the properties of \(k \)-prime, \(k \)-semiprime, \(h \)-prime and \(h \)-semiprime ideals in the matrix semiring \(S_2 = \left(\begin{array}{cc} R & \Gamma \\ S & L \end{array} \right) \).

Besides this we show that the semiring \(S_2 \) provides an example of Morita context for semiring introduced by Dutta and Das. This in other words means that corresponding to every Nobusawa \(\Gamma \)-semiring there exists a Morita context for semirings. To conclude the talk we discuss the reverse question namely: Does there exist a Nobusawa \(\Gamma \)-semiring \(S \) corresponding to a Morita context of semirings such that the Morita context induced by \(S \) is the given one?